Advertisement

Applying Particle Swarm Optimization to Study the Effect of Dominant Poles Places on Performance of a Free Piston Stirling Engine

  • Sh. Zare
  • A. R. Tavakolpour-SalehEmail author
Research Article - Mechanical Engineering
  • 15 Downloads

Abstract

In this paper, the effects of dominant closed-loop poles places of a free piston Stirling engine (FPSE) on the engine performance are investigated. First, linear and nonlinear formulations of an FPSE are presented. Then, based on the presented formulations, dynamic behavior of a prototype free piston Stirling engine, namely SUTECH-SR-1, is studied. Afterward, a part of the simulation results is compared with those of an experimental work to validate the mathematical models. Consequently, the obtained reasonable agreement between the experimental and simulation results affirms the validity of the proposed nonlinear theorem. Next, according to linear and nonlinear formulations, the necessary condition for startup state of the engine is investigated. In addition, it is demonstrated that existence of a stable limit cycle is the necessary condition for engine startup based on theory of nonlinear systems. Subsequently, the effects of two important factors including real and imaginary parts of the dominant closed-loop poles of the FPSE on the engine performance are investigated using particle swarm optimization. According to the obtained simulation outcomes, the free piston Stirling converter is more sensitive to variation of the real component of the dominant closed-loop poles than that of the imaginary part.

Keywords

Free piston Stirling engine Particle swarm optimization Dominant poles 

List of Symbols

A

Crosscut area of the piston and displacer \(({\mathrm{m}^{2}})\)

\(A_r \)

Crosscut area of the displacer rod \(({\mathrm{m}^{2}})\)

b

Damping coefficient \(( {\hbox {N}\,\hbox {s}\,\hbox {m}^{-1}} )\)

F

Position of particle (m)

K

Spring stiffness \(( {\hbox {N}\,\hbox {m}^{-1}})\)

M

Piston mass (kg)

m

Gas mass (kg)

P

Pressure (Pa)

Q

Velocity of particle \(( {\hbox {m}\,\hbox {s}^{-1}})\)

R

Gas constant for dry air \(( {\hbox {J}\,\hbox {kg}^{-1}\,\hbox {K}^{-1}})\)

s

Random vector

T

Temperature (K)

t

Time (s)

u

Random vector

V

Volume \(( {\hbox {m}^{3}})\)

x

Position of displacer piston (m)

y

Position of power piston (m)

Subscript and superscript

c

Cold gas

d

Displacer piston

h

Hot gas

i

Particle

L

Linearity

k

Iteration

r

Regenerator

0

Initial value

N

Nonlinearity

Greek symbols

\(\alpha \)

Constant

\(\beta \)

Constant

\(\theta \)

Phase difference (\(^{\circ }\))

\(\omega \)

Frequency \(( {\mathrm{rad}\, \mathrm{s}^{-1}})\)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zare, S.H.; Tavakolpour-Saleh, A.R.; Omidvar, A.: From Beale number to pole placement design of a free piston Stirling engine. Arch. Mech. Eng. 64, 499–518 (2017)CrossRefGoogle Scholar
  2. 2.
    Jokar, H.; Tavakolpour-Saleh, A.: A novel solar-powered active low temperature differential stirling pump. Renew. Energy 81, 319–337 (2015)CrossRefGoogle Scholar
  3. 3.
    Ahmadi, M.H.; Ahmadi, A.A.; Pourfayaz, F.: Thermal models for analysis of performance of stirling engine: a review. Renew. Sustain. Energy Rev. 68, 168–184 (2016)CrossRefGoogle Scholar
  4. 4.
    Tavakolpour, A.R.; Zomorodian, A.; Golneshan, A.A.: Simulation, construction and testing of a two-cylinder solar Stirling engine powered by a flat-plate solar collector without regenerator. Renew. Energy 33, 77–87 (2008)CrossRefGoogle Scholar
  5. 5.
    Zare, Sh; Tavakolpour-Saleh, A.R.: Frequency-based design of a free piston stirling engine using genetic algorithm. Energy 109, 466–480 (2016)CrossRefGoogle Scholar
  6. 6.
    Zare, S.H.; Shourangiz-Haghighi, A.R.; Tavakolpour-Saleh, A.R.: Higher order modeling of a free-piston stirling engine: analysis, and experiment. Int. J. Energy Environ. Eng. 9, 273–293 (2018)CrossRefGoogle Scholar
  7. 7.
    Der Minassians, A.: Stirling engines for low-temperature solar-thermal-electric power generation. ProQuest, Ann Arbor (2007)Google Scholar
  8. 8.
    Tavakolpour-Saleh, A.R.; Zare, S.H.; Bahreman, H.: A novel active free piston stirling engine: modeling, development, and experiment. Appl. Energy 199, 400–415 (2017)CrossRefGoogle Scholar
  9. 9.
    Tavakolpour-Saleh, A.R.; Zare, S.H.; Badjian, H.: Multi-objective optimization of stirling heat engine using gray wolf optimization algorithm. Int. J. Eng. (IJE) Trans. C Asp. 30(6), 150–160 (2017)Google Scholar
  10. 10.
    Solmaz, H.; Karabulut, H.: Performance comparison of a novel configuration of beta-type stirling engines with rhombic drive engine. Energy Convers. Manag. 78, 627–633 (2014)CrossRefGoogle Scholar
  11. 11.
    Zare, S.H.; Tavakolpour-Saleh, A.R.: Nonlinear dynamic analysis of solar free piston hot-air engine. Modares Mech. Eng. 15(9), 223–234 (2015)Google Scholar
  12. 12.
    Riofrio, J.A.; Al-Dakkan, K.; Hofacker, M.E.; Barth, E.J.: Control-based design of free-piston stirling engines. Am. Control Confer. 2008, 1533–1538 (2008)Google Scholar
  13. 13.
    Hofacker, M.E.; Tucker, J.M.; Barth, E.J.: Modeling and validation of free-piston stirling engines using impedance controlled hardware-in-the-loop. In: Dynamic systems and control conference and bath/ASME symposium on fluid power and motion control. ASME, vol. 2011, pp. 153–160 (2011)Google Scholar
  14. 14.
    Karabulut, H.: Dynamic analysis of a free piston stirling engine working with closed and open thermodynamic cycles. Renew. Energy 36, 1704–1709 (2011)CrossRefGoogle Scholar
  15. 15.
    Mou, J.; Li, W.; Li, J.; Hong, G.: Gas action effect of free piston stirling engine. Energy Convers. Manag. 110, 278–286 (2016)CrossRefGoogle Scholar
  16. 16.
    Tavakolpour-Saleh, A.; Zare, S.; Omidvar, A.: Applying perturbation technique to analysis of a free piston stirling engine possessing nonlinear springs. Appl. Energy 183, 526–541 (2016)CrossRefGoogle Scholar
  17. 17.
    Zare, S.; Tavakolpour-Saleha, A.; Aghajanzadehb, O.: An investigation on the effects of gas pressure drop in heat exchangers on dynamics of a free piston stirling engine. Int. J. Eng. Trans. B Appl. 30, 1243 (2017)Google Scholar
  18. 18.
    Ahmadi, M.H.; Ahmadi, M.A.; Mellit, A.; Pourfayaz, F.; Feidt, M.: Thermodynamic analysis and multi objective optimization of performance of solar dish stirling engine by the centrality of entransy and entropy generation. Int. J. Electr. Power Energy Syst. 78, 88–95 (2016)CrossRefGoogle Scholar
  19. 19.
    Ahmadi, M.H.; Mohammadi, A.H.; Dehghani, S.; Barranco-Jimenez, M.A.: Multi-objective thermodynamic-based optimization of output power of solar dish-stirling engine by implementing an evolutionary algorithm. Energy Convers. Manag. 75, 438–445 (2013)CrossRefGoogle Scholar
  20. 20.
    Kraitong, K.; Mahkamov, K.: Optimisation of low temperature difference solar stirling engines using genetic algorithm. In: World renewable energy congress—Sweden; 8–13 May. Linköping, Sweden, vol. 2011, pp. 3945–3952 (2011)Google Scholar
  21. 21.
    Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8, 256–279 (2004)CrossRefGoogle Scholar
  22. 22.
    Eberhart, R.; Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, vol. 43. IEEE, New York (1995)Google Scholar
  23. 23.
    Kennedy, J.: Particle swarm optimization. In: Encyclopedia of Machine Learning, pp. 760–766. Springer, New York, USA (2011)Google Scholar
  24. 24.
    Kennedy, J.; Eberhart, R.; Shi, Y.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)Google Scholar
  25. 25.
    Fu, W.; Yang, X.; Wang, L.; Yang, Y.: Feedwater heating allocation optimization for large capacity steam turbine unit based on particle swarm optimization. J. Energy Resour. Technol. 137, 042005 (2015)CrossRefGoogle Scholar
  26. 26.
    Meo, S.; Zohoori, A.; Vahedi, A.: Optimal design of permanent magnet flux switching generator for wind applications via artificial neural network and multi-objective particle swarm optimization hybrid approach. Energy Convers. Manag. 110, 230–239 (2016)CrossRefGoogle Scholar
  27. 27.
    Wang, Y.; Li, L.; Ni, J.; Huang, S.: Form tolerance evaluation of toroidal surfaces using particle swarm optimization. J. Manuf. Sci. Eng. 131, 051015 (2009)CrossRefGoogle Scholar
  28. 28.
    Clerc, M.: Particle Swarm Optimization, vol. 93. Wiley, New York (2010)zbMATHGoogle Scholar
  29. 29.
    Kovvur, Y.; Ramaswami, H.; Anand, R.B.; Anand, S.: Minimum-zone form tolerance evaluation using particle swarm optimisation. Int. J. Intell. Syst. Technol. Appl. 4, 79–96 (2008)Google Scholar
  30. 30.
    Sangdani, M.H.; Tavakolpour-Saleh, A.R.; Lotfavar, A.: Genetic algorithm-based optimal computed torque control of a vision-based tracker robot: simulation and experiment. Eng. Appl. Artif. Intell. 31(67), 24–38 (2018)CrossRefGoogle Scholar
  31. 31.
    Sangdani, M.H.; Tavakolpour-Saleh, A.R.: Parameters identification of an experimental vision-based target tracker robot using genetic algorithm. IJE Trans. C Asp. 31(3), 480–486 (2018)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringShiraz University of TechnologyShirazIran

Personalised recommendations