Advertisement

Anisotropic Mesh Refinement Considering a Recovery-Based Error Estimator and Metric Tensors

  • 69 Accesses

Abstract

This paper proposes a new anisotropic h-adaptive technique applied to the finite element method considering triangular finite elements. The proposed technique, named anisotropic error density recovery, utilizes the concept of the energy error density function and the analytical solution of an optimization problem by Lagrange’s multipliers to obtain a metric tensor that represents the dimensions of the new elements. This process aims to limit and equidistribute discretization errors throughout the mesh utilizing finite elements with large aspect ratios. The anisotropic h-adaptive technique is computationally implemented and tested in two-dimensional elliptic problems. The results demonstrate the ability of this approach to generate meshes of elements with high aspect ratios and oriented according to the principal directions of discretization errors. Thus, when compared with isotropic refinement techniques, the anisotropic error density recovery approach shows a significant reduction in the number of vertices for the same permissible error value.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1.

    Zienkiewicz, O.C.; Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24(2), 337–357 (1987)

  2. 2.

    Peraire, J.; Vahdati, M.; Morgan, K.; Zienkiewicz, O.C.: Adaptive remeshing for compressible flow computations. J. Comput. Phys. 72(2), 449–466 (1987)

  3. 3.

    Buscaglia, G.C.; Dari, E.A.: Anisotropic mesh optimization and its application in adaptivity. Int. J. Numer. Methods Eng. 40(22), 4119–4136 (1997)

  4. 4.

    Castro-Díaz, M.J.; Hecht, F.; Mohammadi, B.; Pironneau, O.: Anisotropic unstructured mesh adaptation for flow simulations. Int. J. Numer. Methods Fluids 25(4), 475–491 (1997)

  5. 5.

    Zienkiewicz, O.C.; Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. Part 2: error estimates and adaptivity. Int. J. Numer. Methods Eng. 33(7), 1365–1382 (1992b)

  6. 6.

    Zhu, J.Z.; Zienkiewicz, O.C.: Adaptive techniques in the finite element method. Commun. Appl. Numer. Methods 4(2), 197–204 (1988)

  7. 7.

    Onãte, E.; Bugeda, G.: A study of mesh optimality criteria in adaptive finite element analysis. Eng. Comput. 10(4), 307–321 (1993)

  8. 8.

    Li, L.-Y.; Bettess, P.: Notes on mesh optimal criteria in adaptive finite element computations. Commun. Numer. Methods Eng. 11(11), 911–915 (1995)

  9. 9.

    Li, L.-Y.; Bettess, P.; Bull, J.W.; Bond, T.; Applegarth, I.: Theoretical formulations for adaptive finite element computations. Commun. Numer. Methods Eng. 11(10), 857–868 (1995)

  10. 10.

    Díez, P.; Huerta, A.: A unified approach to remeshing strategies for finite element h-adaptivity. Comput. Methods Appl. Mech. Eng. 176(1–4), 215–229 (1999)

  11. 11.

    Huang, W.: Metric tensors for anisotropic mesh generation. J. Comput. Phys. 204(2), 633–665 (2005)

  12. 12.

    Cao, W.: On the superconvergence patch recovery techniques for the linear finite element approximation on anisotropic meshes. J. Comput. Appl. Math. 265, 33–51 (2014)

  13. 13.

    Cao, W.: Superconvergence analysis of the linear finite element method and a gradient recovery postprocessing on anisotropic meshes. Math. Comput. 84(291), 89–117 (2015)

  14. 14.

    Kuate, R.: Anisotropic metrics for finite element meshes using a posteriori error estimates: Poisson and Stokes equations. Eng. Comput. 29, 497–505 (2013)

  15. 15.

    Linn, R.V.; Awruch, A.M.: Edge-based anisotropic mesh adaptation of unstructured meshes with applications to compressible flow. Eng. Comput. 33(4), 1007–1025 (2017)

  16. 16.

    Picasso, M.: An anisotropic error indicator based on Zienkiewicz–Zhu error estimator: application to elliptic and parabolic problems. SIAM J. Sci. Comput. 24(4), 1328–1355 (2003b)

  17. 17.

    Borges, L.; Feijóo, R.; Padra, C.; Zouain, N.: A directional error estimator for adaptive finite element analysis. In: Computational mechanics, CIMNE, Barcelona, Spain (1998)

  18. 18.

    Jensen, K.E.: Solving stress and compliance constrained volume minimization using anisotropic mesh adaptation, the method of moving asymptotes and a global p-norm. Struct. Multidiscip. Optim. 54, 831–841 (2016a)

  19. 19.

    Jensen, K.E.: Anisotropic mesh adaptation and topology optimization in three dimensions. J. Mech. Design 138, 061401 (2016b)

  20. 20.

    Borouchaki, H.; George, P.L.; Hecht, F.; Laug, P.; Saltel, E.: Delaunay mesh generation governed by metric specifications. Part I. Algorithms. Finite Elem. Anal. Design 25(1–2), 61–83 (1997a)

  21. 21.

    Cao, W.: An interpolation error estimate on anisotropic meshes in \(R^{n}\) and optimal metrics for mesh refinement. SIAM J. Numer. Anal. 45(6), 2368–2391 (2007)

  22. 22.

    Huang, W.; Li, X.: An anisotropic mesh adaptation method for the finite element solution of variational problems. Finite Elem. Anal. Design 46(1–2), 61–73 (2010)

  23. 23.

    Xie, H.; Yin, X.: Metric tensors for the interpolation error and its gradient in \(L^{p}\) norm. J. Comput. Phys. 256, 543–562 (2014)

  24. 24.

    Huang, W.: Mathematical principles of anisotropic mesh adaptation. Commun. Comput. Phys. 1(2), 276–310 (2006)

  25. 25.

    Kunert, G.: An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes. Numer. Math. 86(3), 471–490 (2000)

  26. 26.

    Formaggia, L.; Perotto, S.: Anisotropic error estimates for elliptic problems. Numer. Math. 94(1), 67–92 (2003)

  27. 27.

    Kunert, G.; Nicaise, S.: Zienkiewciz–Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes. ESAIM Math. Modell. Numer. Anal. 37(6), 1013–1043 (2003)

  28. 28.

    Picasso, M.: Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz–Zhu error estimator. Commun. Numer. Methods Eng. 19(1), 13–23 (2003a)

  29. 29.

    Picasso, M.: Adaptive finite elements with large aspect ratio based on an anisotropic error estimator involving first order derivatives. Comput. Methods Appl. Mech. Eng. 196(1–3), 14–23 (2006)

  30. 30.

    Micheletti, S.; Perotto, S.: Reliability and efficiency of an anisotropic Zienkiewicz–Zhu error estimator. Comput. Methods Appl. Mech. Eng. 195(9–12), 799–835 (2006)

  31. 31.

    Hecht, F.: BAMG: Bidimensional anisotropic mesh generator. http://www.freefem.org/ff++/ftp/freefem++doc.pdf (1998). Accessed 25 July 2017

  32. 32.

    Hetch, F.: New development in freefem++. J. Numer. Math. 20(3–4), 251–265 (2012)

  33. 33.

    Zienkiewicz, O.C.; Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int. J. Numer. Methods Eng. 33(7), 1331–1364 (1992a)

  34. 34.

    Boroomand, B.; Zienkiewicz, O.C.: Recovery by equilibrium in patches. Int. J. Numer. Methods Eng. 40(1), 137–164 (1997)

  35. 35.

    Ubertini, F.: Patch recovery based on complementary energy. Int. J. Numer. Methods Eng. 59(11), 1501–1538 (2004)

  36. 36.

    Zhang, Z.; Naga, A.: A new finite element gradient recovery method: Superconvergence property. SIAM J. Sci. Comput. 26(4), 1192–1213 (2005)

  37. 37.

    Ródenas, J.J.; Tur, M.; Fuenmayor, F.J.; Vercher, A.: Improvement of the superconvergent patch recovery by use of constraint equations: the SPR-C technique. Int. J. Numer. Methods Eng. 70(6), 705–727 (2007)

  38. 38.

    Huang, Y.; Yi, N.: The superconvergent cluster recovery method. J. Sci. Comput. 44(3), 301–322 (2010)

  39. 39.

    Oden, J.T.; Reddy, J.N.: An Introduction to the Mathematical Theory of Finite Elements. Dover Publications, New York (2011)

  40. 40.

    Anton, H.; Rorres, C.: Elementary Linear Algebra: Applications Version. Wiley, New York (2010)

  41. 41.

    Hecht, F.: BAMG: Bidimensional anisotropic mesh generator, draft version v1.00. https://www.ljll.math.upmc.fr/hecht/ftp/bamg/bamg.pdf (2006). Accessed 25 July 2017

  42. 42.

    Formaggia, L.; Perotto, S.: New anisotropic a priori error estimates. Numer. Math. 89(4), 641–667 (2001)

  43. 43.

    Dompierre, J.; Mokwinski, Y.; Vallet, M.G.; Guilbault, F.: On ellipse intersection and union with application to anisotropic mesh adaptation. Eng. Comput. 33, 745–766 (2017)

  44. 44.

    Borouchaki, H.; George, P.L.; Mohammadi, B.: Delaunay mesh generation governed by metric specifications. Part II. Applications. Finite Elem. Anal. Design 25(1–2), 85–109 (1997)

  45. 45.

    Hagmeijer, R.: Grid adaptation based on modified anisotropic diffusion equations formulated in the parametric domain. J. Comput. Phys. 115(1), 169–183 (1994)

  46. 46.

    Cook, R.D.; Malkus, D.S.; Plesha, M.E.; Witt, R.J.: Concepts and Applications of Finite Element Analysis, 4th edn. Wiley, New York (2002)

Download references

Author information

Correspondence to Jéderson da Silva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 11627 KB)

Supplementary material 1 (mp4 11627 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pereira, J.T., da Silva, J. Anisotropic Mesh Refinement Considering a Recovery-Based Error Estimator and Metric Tensors. Arab J Sci Eng 44, 5613–5630 (2019). https://doi.org/10.1007/s13369-018-3674-4

Download citation

Keywords

  • Finite element method
  • h-adaptive
  • Anisotropic error density recovery
  • Metrics
  • Anisotropic meshes
  • Error estimator