Comparing Mechanical Behavior of API H-Class Cement Reinforced with Carbon, Mineral or Polypropylene Fiber Additions

  • Juan Jesús Martín-Del-RioEmail author
  • Gonzalo Márquez-Martínez
  • Emilio Romero Macías
  • Olga Rey Balseiro
  • Vicente Flores-Alés
  • Alexis Pérez-Fargallo
  • Carlos Rubio Bellido
Research Article - Petroleum Engineering


Well cementing operations are crucial during the drilling and completion of oil wells. The cement sheath must have sealing ability throughout the well’s life and provide long-term zonal isolation in hostile downhole conditions to avoid potential remedial costs and environmental impacts. In the development of API cements, the reinforcement with dispersed fibers plays an important role. Screening tests were performed to evaluate fiber types (carbon, polypropylene, mineral) with the aim of comparing cement composites that provide improvements in mechanical behavior. All the slurries showed pumpability values at room temperature below 70 Bc (Beardon units of consistency) and are regarded to be pumpable. All the fiber reinforced cement composites presented a notable increase in impact resistance (up to 120 %) and flexural strength (up to 80%) compared to the values for unreinforced matrix. Carbon and mineral fibers also show a noteworthy capacity to increase or maintain the tensile and compressive strengths (data were usually in the ranges 1–2 and 30–45 MPa, respectively) of API cement systems; however, compressive and tensile strength data decrease significantly with the addition of polypropylene fiber type (up to 65 and 25%, respectively). The study mineral fiber with nano-silica could be useful to carry out well cementing jobs.


Carbon fiber Oil well Polypropylene API class H cement Mechanical behavior Well cementing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Taylor, H.F.W.: Cement Chemistry, 2nd edn. Thomas Telford, London (1998)Google Scholar
  2. 2.
    Hunter, B.; Ravi, K.; Kulakofsky, D.: Three key mechanisms deliver zonal isolation. In: Proceedings of IADC Drilling Gulf of Mexico Conference and Exhibition, Galveston, Texas (2007)Google Scholar
  3. 3.
    Shadravan, A.; Schubert, J.; Amani, M.; Teodoriu, C.: HPHT cement sheath integrity evaluation method for unconventional wells. In: Proceedings of SPE International Conference on Health, Safety, and Environment, Long Beach, USA, 17–19 March (2014)Google Scholar
  4. 4.
    Thiercelin, M.J.; Dargau d, B.; Baret, J.F.; Rodriquez, W.J.: Cement design based on cement mechanical response. SPE Drill. Complet. 13, 266–273 (1998)CrossRefGoogle Scholar
  5. 5.
    Jafariesfad, N.; Geiker, M.R.; Gong, Y.; Skalle, P.; Zhang, Z.; He, J.: Cement sheath modification using nanomaterials for long-term zonal isolation of oil wells: review. J. Pet. Sci. Eng. 156, 662–672 (2017)CrossRefGoogle Scholar
  6. 6.
    Al-Darbi, M.M.; Saeed, N.O.; Ajijolaiya, L.O.; Islam, M.R.: A novel oil well cementing technology using natural fibers. Pet. Sci. Technol. 24, 1267–1282 (2006)CrossRefGoogle Scholar
  7. 7.
    Yehia, S.; Douba, A.E.; Abdullahi, O.; Farrag, S.: Mechanical and durability evaluation of fiber-reinforced self-compacting concrete. Constr. Build. Mater. 121, 120–133 (2016)CrossRefGoogle Scholar
  8. 8.
    Beigi, M.H.; Berenjian, J.; Omran, O.L.; Nik, A.S.; Nikbin, M.: An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete. Mater. Des. 50, 1019–1029 (2013)CrossRefGoogle Scholar
  9. 9.
    Mu, B.; Li, Z.; Peng, P.: Short fiber-reinforced cementitious extrude plates with high percentage of slag and different fibers. Cem. Concr. Res. 30, 1277–1282 (2000)CrossRefGoogle Scholar
  10. 10.
    Brandt, A.M.: Fiber reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos. Struct. 86, 3–9 (2008)CrossRefGoogle Scholar
  11. 11.
    Madhavi, T.C.; SwamyRaju, L.; Mathur, D.: Polypropylene fiber reinforced concrete—a review. Int. J. Emerg. Technol. Adv. Eng. 4, 114–119 (2014)Google Scholar
  12. 12.
    Afroughsabet, V.; Ozbakkaloglu, T.: Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Constr. Build. Mater. 94, 73–82 (2015). CrossRefGoogle Scholar
  13. 13.
    Brena, S.F.; Bramblett, R.M.; Wood, S.L.; Kreger, M.E.: Increasing flexural capacity of reinforced concrete beams using carbon fiber-reinforced polymer. Compos. Struct. J. 100, 36–46 (2003)Google Scholar
  14. 14.
    Rong, Z.; Sun, W.; Xiao, H.; Jiang, G.: Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites. Cem. Concr. Compos. 56, 25–31 (2015)CrossRefGoogle Scholar
  15. 15.
    Du, H.; Du, S.; Liu, X.: Durability performances of concrete with nano-silica. Constr. Build. Mater. 73, 705–712 (2014)CrossRefGoogle Scholar
  16. 16.
    Escobar, M.: Petroleum geochemistry at the north-central region of the western coast of the Maracaibo Lake, Venezuela. Ph.D. Thesis. Caracas, Central University of Venezuela (1987)Google Scholar
  17. 17.
    API 10-A 2002. Specifications for Cements and Materials for Well Cementing. American Petroleum Institute, Washington, DCGoogle Scholar
  18. 18.
    Chuang, W.; Geng-sheng, J.; Bing-liang, L.; Lei, P.; Ying, F.; Ni, G.; Ke-zhi, L.: Dispersion of carbon fibers and conductivity of carbon fiber-reinforced cement-based composites. Ceramics International 43, 15122–15132 (2017)CrossRefGoogle Scholar
  19. 19.
    Kavas, T.; Sabah, E.; Çelik, M.S.: Structural properties of sepiolite-reinforced cement composite. Cem. Concr. Res. 34, 2135–2139 (2004)CrossRefGoogle Scholar
  20. 20.
    Yin, S.; Tuladhar, R.; Shi, F.; Combe, M.; Collister, T.; Sivakugan, N.: Use of macro plastic fibres in concrete: a review. Constr. Build. Mater. 93, 180–188 (2015)CrossRefGoogle Scholar
  21. 21.
    Urkhanova, L.; Lkhasaranov, S.; Buiantuev, S.: Fiber-reinforced concrete with mineral fibers and nano-silica. Procedia Eng. 195, 147–154 (2017)CrossRefGoogle Scholar
  22. 22.
    Berndt, M.L.; Philippacopoulos, A.J.: Incorporation of fibres in geothermal well cements. Geothermics 31, 643–656 (2002)CrossRefGoogle Scholar
  23. 23.
    Chung, D.D.L.: Cement reinforced with short carbon fibers: a multifunctional material. Compos. Part B Eng. 31, 511–526 (2000)CrossRefGoogle Scholar
  24. 24.
    Martín, M.: Evaluation of the mechanical properties of fiber reinforced cement systems. BSc. Ph.D. Thesis. Caracas, Central University of Venezuela (2002)Google Scholar
  25. 25.
    El-Gamal, S.M.A.; Al-Nowaiser, F.M.; Al-Baity, A.O.: Effect of superplasticizers on the hydration kinetic and mechanical properties of Portland cement pastes. J. Adv. Res. 3, 119–124 (2012)CrossRefGoogle Scholar
  26. 26.
    API 10-B 2005. Recommended Practices for Testing Well Cements. American Petroleum Institute, Washington, DCGoogle Scholar
  27. 27.
    Nelson, E.B.; Guillot, D.: Well Cementing, 2nd edn. Schlumberger, Houston (1990)Google Scholar
  28. 28.
    Economides, M.J.; Watters, L.T.; Dunn-Norman, S.: Petroleum Well Construction, p. 61. Wiley, Chichester (1998)Google Scholar
  29. 29.
    Williams, R.H., et al.: Flexible, expanding cement system (FECS) successfully provides zonal isolation across Marcellus shale gas trends. In: Proceedings of Canadian Unconventional Resources Conference, Calgary, Alberta, Canada, 15–17 November (2011)Google Scholar
  30. 30.
    Ma, Y.; Gu, J.; Li, Y.; Li, Y.: The bending fatigue performance of cement-stabilized aggregate reinforced with polypropylene filament fiber. Constr. Build. Mater. 83, 230–236 (2015)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Juan Jesús Martín-Del-Rio
    • 1
    Email author
  • Gonzalo Márquez-Martínez
    • 2
  • Emilio Romero Macías
    • 2
  • Olga Rey Balseiro
    • 3
  • Vicente Flores-Alés
    • 1
  • Alexis Pérez-Fargallo
    • 4
  • Carlos Rubio Bellido
    • 1
  1. 1.Department of Architectonic Constructions IIUniversity of SevilleSevillaSpain
  2. 2.Department of Mining, Mechanical, Energetic and Construction EngineeringUniversity of HuelvaHuelvaSpain
  3. 3.School of Geology, Mines and GeophysicsCentral University of VenezuelaCaracasVenezuela
  4. 4.Department of Construction SciencesUniversity of BioBioConcepciónChile

Personalised recommendations