Advertisement

Sustained Release Geraniol Nanoparticles Inhibit Human Axillary Odor-Causing Bacteria

  • Tan Wen Nee
  • Leong Chean Ring
  • Venoth Arumugam
  • Judy Loo Ching Yee
  • Lee Wing Hin
  • Fahmi Asyadi Md Yusof
  • Mohd Azizan Mohd Noor
  • Tong Woei Yenn
Research Article - Biological Sciences
  • 8 Downloads

Abstract

Human axillary odor is formed when the skin secretions come into contact with the microflora residing on the skin. The interplay between skin bacteria led to microbial conversion of odorless apocrine sweat into odorous organic acid compounds. Geraniol exhibited significant antimicrobial activity against several human axillary odor-causing bacteria; however, the usage in antiperspirants was limited due to its high volatility. In this study, geraniol nanoparticle was synthesized using dextran as encapsulant to improve its release sustainability. The antimicrobial efficiency of the nanoparticles was also tested on human axillary odor-producing bacteria. The particle size of geraniol nanoparticles ranged from 70 to 110 nm, with an average size of 88 nm while the encapsulation efficiency was 69.24%. The release of geraniol was slow and gradual throughout the experimental period, with no burst release effect. Geraniol was totally entrapped into the interior structure of polymer matrix, and 81.28% of geraniol was released from the nanoparticles in 48 h. The release was plateau on 96 h, following the first order of kinetic. On disk diffusion assay, 6 out of 8 test bacteria were susceptible to geraniol nanoparticles. The inhibitory activity was broad spectrum, as it inhibited both Gram-positive and Gram-negative bacteria. Based on kill curve analysis of Staphylococcus hominis, the bacterial killing capability of geraniol nanoparticles was concentration-dependent. At minimal bactericidal concentration, 99.9% of growth reduction was observed relative to control. In conclusion, an efficient nanoparticle-based geraniol drug delivery system was successfully developed using dextran as encapsulant. The well-regulated drug delivery system enables sustainable release of geraniol to meet the application requirements.

Keywords

Antibacterial efficiency Geraniol nanoparticles Human axillary odor Sustain release 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study is supported by Fundamental Research Grant Scheme (FRGS/1/2017/STG05/UNIKL/02/5).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    Natsch, A.: Biochemistry and genetics of human axilla odor. In: Buettner, A. (ed.) Springer Handbook of Odor, pp. 123–124. Springer, Heidelberg (2017)CrossRefGoogle Scholar
  2. 2.
    Rathinamoorthy, R.; Thilagavathi, G.; Brindha, S.; Gayathri, P.; Poornakala, N.S.; Pradeep, B.: Odour control studies on apparel fabrics finished with methanol extract of \(Terminalia chebula\). Fibers Polym. 15(8), 1669–1676 (2014)CrossRefGoogle Scholar
  3. 3.
    Kanlayavattanakul, M.; Lourith, N.: Body malodours and their topical treatment agents. Int. J. Cosmet. Sci. 33(4), 298–311 (2011)CrossRefGoogle Scholar
  4. 4.
    Allam, M.F.: Breast cancer and deodorants/antiperspirants: a systematic review. Cent. Eur. J. Public Health 24(3), 245–248 (2016)CrossRefGoogle Scholar
  5. 5.
    Panáček, A.; Kvítek, L.; Smékalová, M.; Večeřová, R.; Kolář, M.; Röderová, M.; Dyčka, F.; Šebela, M.; Prucek, R.; Tomanec, O.; Zbořil, R.: Bacterial resistance to silver nanoparticles and how to overcome it. Nat. Nanotechnol. 13(1), 65–67 (2018)CrossRefGoogle Scholar
  6. 6.
    Lapczynski, A.; Bhatia, S.P.; Foxenberg, R.J.; Letizia, C.S.; Api, A.M.: Fragrance material review on geraniol. Food Chem. Toxicol. 46(11), 160–170 (2008)CrossRefGoogle Scholar
  7. 7.
    Chen, W.; Viljoen, A.M.: Geraniol-a review of a commercially important fragrance material. S. Afr. J. Bot. 76(4), 643–651 (2010)CrossRefGoogle Scholar
  8. 8.
    Inouye, S.; Yamaguchi, H.; Takizawa, T.: Screening of the antibacterial effects of a variety of essential oils on respiratory tract pathogens, using a modified dilution assay method. J. Infect. Chemother. 7(4), 251–254 (2001)CrossRefGoogle Scholar
  9. 9.
    Lee, W.H.; Bebawy, M.; Loo, C.Y.; Luk, F.; Mason, R.S.; Rohanizadeh, R.: Fabrication of curcumin micellar nanoparticles with enhanced anti-cancer activity. J. Biomed. Nanotechnol. 11(6), 1093–1105 (2015)CrossRefGoogle Scholar
  10. 10.
    Yegin, Y.; Perez-Lewis, K.L.; Zhang, M.; Akbulut, M.; Taylor, T.M.: Development and characterization of geraniol-loaded polymeric nanoparticles with antimicrobial activity against foodborne bacterial pathogens. J. Food Eng. 170, 64–71 (2016)CrossRefGoogle Scholar
  11. 11.
    Yenn, T.W.; Lee, C.C.; Ibrahim, D.; Zakaria, L.: Enhancement of anti-candidal activity of endophytic fungus Phomopsis sp. ED2, isolated from \(Orthosiphon stamineus\) Benth, by incorporation of host plant extract in culture medium. J. Microbiol. 50(4), 581–585 (2012)CrossRefGoogle Scholar
  12. 12.
    Kumari, A.; Yadav, S.K.; Yadav, S.C.: Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces 75(1), 1–18 (2010)CrossRefGoogle Scholar
  13. 13.
    Mudshinge, S.R.; Deore, A.B.; Patil, S.; Bhalgat, C.M.: Nanoparticles: emerging carriers for drug delivery. Saudi Pharm. J. 19(3), 129–141 (2011)CrossRefGoogle Scholar
  14. 14.
    Balas, M.; Ciobanu, C.S.; Burtea, C.; Stan, M.S.; Bezirtzoglou, E.; Predoi, D.; Dinischiotu, A.: Synthesis, characterization, and toxicity evaluation of dextran-coated iron oxide nanoparticles. Metals 7(2), 63 (2017)CrossRefGoogle Scholar
  15. 15.
    Ayala, V.; Herrera, A.P.; Latorre-Esteves, M.; Torres-Lugo, M.; Rinaldi, C.: Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles. J. Nanoparticle Res. 15(8), 1874–1879 (2013)CrossRefGoogle Scholar
  16. 16.
    Hadian, Z.; Maleki, M.; Abdi, K.; Atyabi, F.; Mohammadi, A.; Khaksar, R.: Preparation and characterization of nanoparticle \(\upbeta \)-cyclodextrin: geraniol inclusion complexes. Iran. J. Pharm. Res. 17(1), 39–51 (2018)Google Scholar
  17. 17.
    Liu, D.; Sun, Q.; Xu, J.; Li, N.; Lin, J.; Chen, S.; Li, F.: Purification, characterization, and bioactivities of a polysaccharide from mycelial fermentation of \(Bjerkandera fumosa\). Carbohydr. Polym. 167, 115–122 (2017)CrossRefGoogle Scholar
  18. 18.
    Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R.; Rudzinski, W.E.: Biodegradable polymeric nanoparticles as drug delivery devices. J. Control Release 70(2), 1–20 (2001)CrossRefGoogle Scholar
  19. 19.
    Liu, Z.; Jiao, Y.; Wang, Y.; Zhou, C.; Zhang, Z.: Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev. 60(15), 1650–1662 (2008)CrossRefGoogle Scholar
  20. 20.
    Troccaz, M.; Gaïa, N.; Beccucci, S.; Schrenzel, J.; Cayeux, I.; Starkenmann, C.; Lazarevic, V.: Mapping axillary microbiota responsible for body odours using a culture-independent approach. Microbiome 3(1), 3–7 (2015)CrossRefGoogle Scholar
  21. 21.
    Perez-Lewis, K.L.; Yegin, Y.; Cisneros-Zevallos, L.; Castillo, A.; Kerth, C.R.; Akbulut, M.; Taylor, T.M.: Geraniol-loaded polymeric nanoparticles inhibit enteric pathogens on spinach during post-treatment refrigerated and temperature abuse storage. Front. Sustain. Food Syst. 2, 4–9 (2018)CrossRefGoogle Scholar
  22. 22.
    Troccaz, M.; Starkenmann, C.; Niclass, Y.; Van de Waal, M.; Clark, A.J.: 3-Methyl-3-sulfanylhexan-1-ol as a major descriptor for the human axilla-sweat odour profile. Chem. Biodivers. 1(7), 1022–1035 (2004)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Tan Wen Nee
    • 1
  • Leong Chean Ring
    • 2
  • Venoth Arumugam
    • 2
  • Judy Loo Ching Yee
    • 3
  • Lee Wing Hin
    • 3
  • Fahmi Asyadi Md Yusof
    • 2
  • Mohd Azizan Mohd Noor
    • 2
  • Tong Woei Yenn
    • 2
  1. 1.School of Distance EducationUniversiti Sains MalaysiaMindenMalaysia
  2. 2.Malaysian Institute of Chemical and Bioengineering TechnologyUniversiti Kuala LumpurAlor GajahMalaysia
  3. 3.Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak (RCMP UniKL)Universiti Kuala LumpurIpohMalaysia

Personalised recommendations