Advertisement

Throughput Analysis of Wireless Energy-Harvesting Relaying Protocols for Nakagami-m Fading Channels

  • Omer Waqar
  • Mahrukh Liaqat
Research Article - Electrical Engineering
  • 22 Downloads

Abstract

An amplify-and-forward-based relay network is considered in which an energy-constrained relay is capable of harvesting energy from radio frequency (RF) signal. The source transmits the RF signal that contains both energy and information. The relay first scavenges the RF energy using the time switching (TS) or power-splitting (PS) protocols and then utilizes this energy to forward the signal to the destination. In this paper, new analytical framework has been presented for the outage and ergodic throughputs of the TS and PS protocols considering the Nakagami-m fading channels. Specifically, an exact closed-form expression for the outage throughput has been derived assuming an integer fading parameter. Furthermore, as the exact closed-form expressions for the outage throughput (for arbitrary fading parameters) and ergodic throughput (for both integer and arbitrary fading parameters) are mathematically intractable, new closed-form approximations and bounds have been derived. Finally all the derived expressions have been validated by the Monte Carlo simulations.

Keywords

Amplify-and-forward (AF) Nakagami-m Power splitting (PS) Time switching (TS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, R.; Ho, C.K.: MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans. Wirel. Commun. 12(5), 1989–2001 (2013)CrossRefGoogle Scholar
  2. 2.
    Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z.: Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun. Surv. Tutor. 17(2), 757–789 (2015)CrossRefGoogle Scholar
  3. 3.
    Krikidis, I.; Timotheou, S.; Nikolaou, S.; Zheng, G.; Ng, D.W.K.; Schober, R.: Simultaneous wireless information and power transfer in modern communication systems. IEEE Commun. Mag. 52(11), 104–110 (2014)CrossRefGoogle Scholar
  4. 4.
    Huang, K.; Larsson, E.: Simultaneous information and power transfer for broadband wireless systems. IEEE Trans. Signal Process. 61(23), 5972–5986 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Sreedhar, D.; Chockalingam, A.: Interference mitigation in cooperative SFBC-OFDM. EURASIP J. Adv. Signal Process. 2008(1), 125735 (2008).  https://doi.org/10.1155/2008/125735 CrossRefzbMATHGoogle Scholar
  6. 6.
    Krikidis, I.; Timotheou, S.; Sasaki, S.: RF energy transfer for cooperative networks: data relaying or energy harvesting? IEEE Commun. Lett. 16(11), 1772–1775 (2012)CrossRefGoogle Scholar
  7. 7.
    Li, G.; Zhu, S.; Ren, P.; Hui, H.: A dynamic power allocation and relay selection scheme for energy-harvesting wireless networks. In: 2014 IEEE Radio and Wireless Symposium (RWS), pp. 247–249 (2014)Google Scholar
  8. 8.
    Nasir, A.A.; Zhou, X.; Durrani, S.; Kennedy, R.A.: Throughput and ergodic capacity of wireless energy harvesting based DF relaying network. In: IEEE International Conference on Communications (ICC), pp. 4066–4071 (2014)Google Scholar
  9. 9.
    Chu, Z.; Johnston, M.; Goff, S.L.: SWIPT for wireless cooperative networks. Electron. Lett. 51(6), 536–538 (2015)CrossRefGoogle Scholar
  10. 10.
    Nasir, A.A.; Zhou, X.; Durrani, S.; Kennedy, R.A.: Relaying protocols for wireless energy harvesting and information processing. IEEE Trans. Wirel. Commun. 12(7), 3622–3636 (2013)CrossRefGoogle Scholar
  11. 11.
    Nasir, A.A.; Zhou, X.; Durrani, S.; Kennedy, R.A.: Wireless-powered relays in cooperative communications: time-switching relaying protocols and throughput analysis. IEEE Trans. Commun. 63(5), 1607–1622 (2015)CrossRefGoogle Scholar
  12. 12.
    Chen, Z.; Xia, B.; Liu, H.: Wireless information and power transfer in two-way amplify-and-forward relaying channels. In: IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 168–172 (2014)Google Scholar
  13. 13.
    Zhong, C.; Suraweera, H.A.; Zheng, G.; Krikidis, I.; Zhang, Z.: Wireless information and power transfer with full duplex relaying. IEEE Trans. Commun. 62(10), 3447–3461 (2014)CrossRefGoogle Scholar
  14. 14.
    Zhu, G.; Zhong, C.; Suraweera, H.A.; Karagiannidis, G.K.; Zhang, Z.; Tsiftsis, T.A.: Wireless information and power transfer in relay systems with multiple antennas and interference. IEEE Trans. Commun. 63(4), 1400–1418 (2015)CrossRefGoogle Scholar
  15. 15.
    Nakagami, M.: The m-distribution: a general formula of intensity distribution of rapid fading. In: Hoffman W.G. (ed.) Statistical Method of Radio Propagation, Pergamon, Oxford, pp. 3–35 (1960)Google Scholar
  16. 16.
    Chen, Y.: Energy-harvesting AF relaying in the presence of interference and Nakagami-\(m\) fading. IEEE Trans. Wirel. Commun. 15(2), 1008–1017 (2016)CrossRefGoogle Scholar
  17. 17.
    Dong, Y.; Hossain, M.J.; Cheng, J.: Performance of wireless powered amplify and forward relaying over Nakagami-\(m\) fading channels with nonlinear energy harvester. IEEE Commun. Lett. 20(4), 672–675 (2016)CrossRefGoogle Scholar
  18. 18.
    Beaulieu, N.C.; Farhadi, G.; Chen, Y.: A precise approximation for performance evaluation of amplify-and-forward multihop relaying systems. IEEE Trans. Wirel. Commun. 10(12), 3985–3989 (2011)CrossRefGoogle Scholar
  19. 19.
    Chen, H.; Li, Y.; Rebelatto, J.L.; UchÃt’a-Filho, B.F.; Vucetic, B.: Harvest-then-cooperate: wireless-powered cooperative communications. IEEE Trans. Signal Process. 63(7), 1700–1711 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hasna, M.; Alouini, M.-S.: End-to-end performance of transmission systems with relays over Rayleigh-fading channels. IEEE Trans. Wirel. Commun. 2(6), 1126–1131 (2003)CrossRefGoogle Scholar
  21. 21.
    Hasna, M.O.; Alouini, M.-S.: A performance study of dual-hop transmissions with fixed gain relays. IEEE Trans. Wirel. Commun. 3(6), 1963–1968 (2004)CrossRefGoogle Scholar
  22. 22.
    Gradshteyn, I.S.; Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn. Academic, New York (2000)zbMATHGoogle Scholar
  23. 23.
    Tsiftsis, T.A.; Karagiannidis, G.K.; Mathiopoulos, P.T.; Kotsopoulos, S.A.: Nonregenerative dual-hop cooperative links with selection diversity. EURASIP J. Wirel. Commun. Netw. 2006, 34–34 (2006).  https://doi.org/10.1155/WCN/2006/17862 CrossRefGoogle Scholar
  24. 24.
    Zhong, C.; Matthaiou, M.; Karagiannidis, G.K.; Ratnarajah, T.: Generic ergodic capacity bounds for fixed-gain AF dual-hop relaying systems. IEEE Trans. Veh. Technol. 60(8), 3814–3824 (2011)CrossRefGoogle Scholar
  25. 25.
    Waqar, O.; Ghogho, M.; McLernon, D.: Tight bounds for ergodic capacity of dual-hop fixed-gain relay networks under Rayleigh fading. IEEE Commun. Lett. 15(4), 413–415 (2011)CrossRefGoogle Scholar
  26. 26.
    Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I.: Integrals and Series, Vol. 4: Direct Laplace Transforms, Gordon & Breach, New York (1992)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Electrical Engineering Department, Al-Khawarizmi Institute of Computer Science (KICS)University of Engineering and Technology (UET), LahoreLahorePakistan
  2. 2.University of Engineering and Technology (UET), LahoreLahorePakistan

Personalised recommendations