Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1649–1656 | Cite as

Impact Behavior of Preloaded Aluminum Plates at Oblique Conditions

  • Selim GürgenEmail author
Research Article - Mechanical Engineering


In this paper, preloading on plates and obliquity in impacts are brought together in order to achieve more realistic conditions for the plates such as in aerospace applications. A numerical model was established to simulate the oblique impact on preloaded aluminum plates. In the design of impacts, numerical simulations were carried out using three variable parameters namely preloading condition, oblique angle and impact velocity. Based on the results, preloading leads to crack initiations on the plates due to sharp edges around the perforation holes. On the other hand, full perforation is observed at low oblique angles however, deformation mode turns to tearing by increasing obliquity of the plates. Impact velocity is another important factor on the impact resistance of the plates. Despite high oblique angles, the plates can be perforated under high-velocity impacts.


Oblique impact Preloading Aluminum plate Finite element method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gupta, N.K.; Iqbal, M.A.; Sekhon, G.S.: Effect of projectile nose shape, impact velocity and target thickness on deformation behavior of aluminum plates. Int. J. Solids Struct. 44, 3411–3439 (2007)CrossRefGoogle Scholar
  2. 2.
    Gupta, N.K.; Iqbal, M.A.; Sekhon, G.S.: Experimental and numerical studies on the behavior of thin aluminum plates subjected to impact by blunt- and hemispherical-nosed projectiles. Int. J. Impact Eng. 32, 1921–1944 (2006)CrossRefGoogle Scholar
  3. 3.
    Gooch, W.; Burkins, M.S.; Squillacioti, R.J.: Ballistic testing of commercial aluminum alloys and alternative processing techniques to increase the availability of aluminum armor. In: 23rd International Symposium on Ballistics, Tarragona, Spain, 16-20 April 2007, pp. 981–988 (2007)Google Scholar
  4. 4.
    Paik, J.K.; Won, S.H.: On deformation and perforation of ship structures under ballistic impacts. Ships Offshore Struct. 2, 217–226 (2007)CrossRefGoogle Scholar
  5. 5.
    Jones, N.; Paik, J.K.: Impact perforation of aluminium alloy plates. Int. J. Impact Eng. 48, 46–53 (2012)CrossRefGoogle Scholar
  6. 6.
    Liu, Z.S.; Swaddiwudhipong, S.; Islam, M.J.: Perforation of steel and aluminum targets using a modified Johnson–Cook material model. Nucl. Eng. Des. 250, 108–115 (2012)CrossRefGoogle Scholar
  7. 7.
    Forrestal, M.J.; Warren, T.L.: Perforation equations for conical and ogival nose rigid projectiles into aluminum target plates. Int. J. Impact Eng. 36, 220–225 (2009)CrossRefGoogle Scholar
  8. 8.
    Heimbs, S.; Heller, S.; Middendorf, P.; Hähnel, F.; Weiße, J.: Low velocity impact on CFRP plates with compressive preload: test and modelling. Int. J. Impact Eng. 36, 1182–1193 (2009)CrossRefGoogle Scholar
  9. 9.
    Herszberg, I.; Weller, T.: Impact damage resistance of buckled carbon/epoxy panels. Compos. Struct. 73, 130–137 (2006)CrossRefGoogle Scholar
  10. 10.
    Minak, G.; Abrate, S.; Ghelli, D.; Panciroli, R.; Zucchelli, A.: Low-velocity impact on carbon/epoxy tubes subjected to torque—experimental results, analytical models and FEM analysis. Compos. Struct. 92, 623–632 (2010)CrossRefGoogle Scholar
  11. 11.
    Whittingham, B.; Marshall, I.H.; Mitrevski, T.; Jones, R.: The response of composite structures with pre-stress subject to low velocity impact damage. Compos. Struct. 66, 685–698 (2004)CrossRefGoogle Scholar
  12. 12.
    García-Castillo, S.K.; Sánchez-Sáez, S.; Barbero, E.: Behaviour of uniaxially preloaded aluminium plates subjected to high-velocity impact. Mech. Res. Commun. 38, 404–407 (2011)CrossRefGoogle Scholar
  13. 13.
    Gürgen, S.; Kuşhan, M.C.: The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids. Polym. Test. 64, 296–306 (2017)CrossRefGoogle Scholar
  14. 14.
    Gürgen, S.: The influence of boundary condition on the impact behavior of high performance fabrics. Adv. Eng. Forum 28, 47–54 (2018)CrossRefGoogle Scholar
  15. 15.
    Rodriguez-Millan, M.; Garcia-Gonzalez, D.; Rusinek, A.; Abed, F.; Arias, A.: Perforation mechanics of 2024 aluminium protective plates subjected to impact by different nose shapes of projectiles. Thin Walled Struct. 123, 1–10 (2018)CrossRefGoogle Scholar
  16. 16.
    Gürgen, S.: A numerical investigation on oblique projectile impact behavior of AA5083-H116 plates. J. Polytech. (2018).
  17. 17.
    Mohammad, Z.; Gupta, P.K.; Iqbal, M.A.; Baqi, A.: Energy absorption in metallic targets subjected to oblique impact. Proc. Eng. 173, 145–152 (2017)CrossRefGoogle Scholar
  18. 18.
    Iqbal, M.A.; Senthil, K.; Madhu, V.; Gupta, N.K.: Oblique impact on single, layered and spaced mild steel targets by 7.62 AP projectiles. Int. J. Impact Eng. 110, 26–38 (2017)CrossRefGoogle Scholar
  19. 19.
    Hinrichsen, R.L.; Moshier, M.A.; Choules, B.D.: Extend MANPADS M&S Capabilities to include energetic materials, fragmentation effects, and wing flutter response. (2005). Accessed 15 Oct 2018
  20. 20.
    Belytschko, T.; Liu, W.K.; Moran, B.; Elkhodary, K.I.: Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester (2014)zbMATHGoogle Scholar
  21. 21.
    Raguraman, M.; Deb, A.; Gupta, N.K.: CAE-based prediction of projectile residual velocity for impact on single and multi-layered metallic armour plates. Latin Am. J. Solids Struct. 6, 247–263 (2009)Google Scholar
  22. 22.
    Hazell, P.J.: Armour: Materials, Theory, and Design. CRC Press, Boca Raton (2015)CrossRefGoogle Scholar
  23. 23.
    Børvik, T.; Olovsson, L.; Dey, S.; Langseth, M.: Normal and oblique impact of small arms bullets on AA6082-T4 aluminium protective plates. Int. J. Impact Eng. 38, 577–589 (2011)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Eskişehir Vocational SchoolESOGUEskişehirTurkey

Personalised recommendations