Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1617–1630 | Cite as

Optimization of Melt Zone Area for Electron Beam Welded Hastelloy C-276 Sheet and Study of Corrosion Resistance of the Optimized Melt Zone in 3.5 wt% NaCl Aqueous Solution

  • Kalinga Simant Bal
  • Jyotsna Dutta Majumdar
  • Asimava Roy ChoudhuryEmail author
Research Article - Mechanical Engineering


Hastelloy C-276 superalloy has a wide range of applications including petroleum and petrochemical industries. Since welding forms an essential fabrication method for joining different structures in these industries, selection of suitable welding parameters is a prime concern that is yet to be addressed for Hastelloy C-276. In the present study, optimization of process parameters for electron beam welding of 2.6-mm-thick Hastelloy C-276 sheet has been carried out to obtain weld bead having through-penetration and minimum weld (or melt) zone cross-sectional area. A simple optimization technique is employed in the present study to solve the multi-objective minimization problem. After carrying out the full factorial experiment using selected process parameters, various geometric elements of the weld bead are identified as the output responses. The regression equation is developed for each geometric element from the experimental data. The desired value of a geometric element is specified as a constraint for the corresponding regression equation. A number of regression equations (considering all the geometric elements) are solved in parallel to obtain an optimized set of process parameters, followed by a confirmation test. Further, the optimized melt zone is subjected to cyclic potentiodynamic polarization test to study its susceptibility to localized corrosion. It is observed that polarization curve characteristics of base metal and optimized melt zone are not significantly different; however, the repassivation potential of the melt zone is less than that of the base metal. A flowchart showing the layout of the employed optimization technique followed by corrosion test is attached.


Hastelloy C-276 Electron beam welding Optimization Full factorial design Regression equation Cyclic potentiodynamic polarization test 

List of symbols


Electron beam welding

Wire EDM

Wire electrical discharge machining


Total throat


Crown width


Root width

\({\theta }_{1}\)

\(\hbox {Angle}_{1}\)


\(\hbox {Radius}_{1}\)

\({\theta }_{2}\)

\(\hbox {Angle}_{2}\)


\(\hbox {Radius}_{2}\)


Neck width


Parallelogram height


Polynomial profile height

\({\theta }_{3}\)

\(\hbox {Angle}_{3}\)


\(\hbox {Radius}_{3}\)


Melt zone area


Accelerating voltage \(({\mathrm {Factor}}_{1}\, \mathrm {or}\, {\mathrm {Main}\, \mathrm {effect}}_{1})\)


Beam current \(({\mathrm {Factor}}_{2}\, \mathrm {or}\, {\mathrm {Main}\, \mathrm {effect}}_{2})\)


Scanning speed \(({\mathrm {Factor}}_{3}\, \mathrm {or}\, {\mathrm {Main}\, \mathrm {effect}}_{3})\)


First level of accelerating voltage


Second level of accelerating voltage


First level of beam current


Second level of beam current


First level of scanning speed


Second level of scanning speed


Regression constant for ith output response, where \({i} = 1, 2, 3,\ldots , 13\)


Regression coefficient of mth main (factor) effect and interaction effect for ith output response, where \({m} = 1, 2, 3,\ldots , 7\)


R-squared (or coefficient of determination)

P value

Probability value (obtained by F test)


American Iron and Steel Institute


Stainless steel

\({S}_{\mathrm {r}}\)

Scan rate


Immersion time before measuring \({E}_{\mathrm {OCV}}\)

\({E}_{\mathrm {OCV}}\)

Open-circuit potential


Open-circuit voltage

\({E}_{\mathrm {i}}\)

Starting scan potential

\({I}_{\mathrm {r}}\)

Reverse scan current

\({E}_{\mathrm {f}}\)

End scan potential

\({\rho }\)

Density of Hastelloy C-276

\({E}_{\mathrm {REF}}\)

Reference electrode potential

\({E}_{\mathrm {Corr}}\)

Corrosion potential

\({E}_{\mathrm {Prot}}\)

Protection potential


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are very grateful to all the faculty members, technical staffs and research scholars of Department of Metallurgical & Materials Engineering, Department of Mechanical Engineering and Central Research Facility, I.I.T. Kharagpur, for extending their support to carry out various experiments. The authors would like to thank Mr. Rajib Chakraborty, research scholar of Department Mechanical Engineering, I.I.T. Kharagpur, for extending kind support in carrying out the corrosion experiment.


  1. 1.
    H-2002E: Hastelloy\(^{{\textregistered }}\) C-276 alloy. Haynes International. (2017). Accessed 04 June 2018
  2. 2.
    Terai, K.; Shimizu, S.; Aota, T.; Sudo, K.: Some considerations on electron beam welding of heat-resistant superalloys for nuclear plants. FAPIG (Tokyo) 84, 19–23 (1977)Google Scholar
  3. 3.
    Ferro, P.; Zambon, A.; Bonollo, F.: Investigation of electron-beam welding in wrought Inconel 706—experimental and numerical analysis. Mater. Sci. Eng. A 392, 94–105 (2005)CrossRefGoogle Scholar
  4. 4.
    Downing, E.: High energy electron beam welding and materials processing. Materials technology. (1993). Accessed 04 June 2018
  5. 5.
    Węglowski, MSt; Błacha, S.; Phillips, A.: Electron beam welding-techniques and trends-review. Vacuum. 130, 72–92 (2016)CrossRefGoogle Scholar
  6. 6.
    Huiqiang, W.; Jicai, F.; Jingshan, H.: Microstructure evolution and fracture behaviour for electron beam welding of Ti-6Al-4V. Bull. Mater. Sci. 27, 387–392 (2004)CrossRefGoogle Scholar
  7. 7.
    Ahmad, M.; Akhter, J.I.; Akhtar, M.; Iqbal, M.; Ahmed, E.; Choudhry, M.A.: Microstructure and hardness studies of the electron beam welded zone of Hastelloy C-276. J. All. Comp. 390, 88–93 (2005)CrossRefGoogle Scholar
  8. 8.
    Dey, V.; Pratihar, D.K.; Datta, G.L.; Jha, M.N.; Saha, T.K.; Bapat, A.V.: Optimization and prediction of weldment profile in bead-on-plate welding of Al-1100 plates using electron beam. Int. J. Adv. Manuf. Technol. 48, 513–528 (2010)CrossRefGoogle Scholar
  9. 9.
    Kanigalpula, P.K.C.; Pratihar, D.K.; Jha, M.N.; Derose, J.; Bapat, A.V.; Pal, A.R.: Experimental investigations, input-output modeling and optimization for electron beam welding of Cu-Cr-Zr alloy plates. Int. J. Adv. Manuf. Technol. 85, 711–726 (2016)CrossRefGoogle Scholar
  10. 10.
    Das, D.; Pratihar, D.K.; Roy, G.G.; Pal, A.R.: Phenomenological model-based study on electron beam welding process, and input-output modeling using neural networks trained by back-propagation algorithm, genetic algorithms, particle swarm optimization algorithm and bat algorithm. Appl. Intell. 48, 2698–2718 (2018)CrossRefGoogle Scholar
  11. 11.
    Dey, V.; Pratihar, D.K.; Datta, G.L.; Jha, M.N.; Saha, T.K.; Bapat, A.V.: Optimization of bead geometry in electron beam welding using a Genetic Algorithm. J. Mater. Process. Technol. 209, 1151–1157 (2009)CrossRefGoogle Scholar
  12. 12.
    Koleva, E.: Statistical modelling and computer programs for optimisation of the electron beam welding of stainless steel. Vacuum 62, 151–157 (2001)CrossRefGoogle Scholar
  13. 13.
    Siddaiah, A.; Singh, B.K.; Mastanaiah, P.: Prediction and optimization of weld bead geometry for electron beam welding of AISI 304 stainless steel. Int. J. Adv. Manuf. Technol. 89, 27–43 (2017)CrossRefGoogle Scholar
  14. 14.
    Thakare, S.V.; Prabhu, N.; Singh, R.P.: Optimization of electron beam welding parameters for Ti-6Al-4V alloy by using Taguchi method, Joining of Advanced and Specialty Materials (JASM XVIII). Materials Science & Technology (2016)Google Scholar
  15. 15.
    Bal, K.S.; Majumdar, J.D.; Choudhury, A.R.: Minimization of bead geometry by optimization of regression equations for laser-beam bead-on-plate welded Hastelloy C-276 sheet. J Braz. Soc. Mech. Sci. Eng. 40, 451 (2018)CrossRefGoogle Scholar
  16. 16.
    Khan, M.M.A.; Romoli, L.; Fiaschi, M.; Dini, G.; Sarri, F.: Experimental design approach to the process parameter optimization for laser welding of martensitic stainless steels in a constrained overlap configuration. Opt. Laser. Technol. 43, 158–172 (2011)CrossRefGoogle Scholar
  17. 17.
    Casalino, G.: Statistical analysis of MIG-laser \(\text{ CO }_{2}\) hybrid welding of Al-Mg alloy. J. Mater. Process. Technol. 191, 106–110 (2007)CrossRefGoogle Scholar
  18. 18.
    Datta, S.; Bandyopadhyay, A.; Pal, P.K.: Modeling and optimization of features of bead geometry including percentage dilution in submerged arc welding using mixture of fresh flux and fused slag. Int. J. Adv. Manuf. Technol. 36, 1080–1090 (2008)CrossRefGoogle Scholar
  19. 19.
    Caiazzo, F.; Alfieri, V.; Sergi, V.; Schipani, A.; Cinque, S.: Dissimilar autogenous disk-laser welding of Haynes 188 and Inconel 718 superalloys for aerospace applications. Int. J. Adv. Manuf. Technol. 68, 1809–1820 (2013)CrossRefGoogle Scholar
  20. 20.
    AWS B3.0: Standard Qualification Procedure. American Welding Society. (1977). Accessed 04 June 2018
  21. 21.
    AWS A3.0M/A3.0: Standard Welding Terms and Definitions. American Welding Society. (2010). Accessed 04 June 2018
  22. 22.
    Ma, G.; Niu, F.; Wu, D.; Qu, Y.: Electrochemistry corrosion properties of pulsed laser welding Hastelloy C-276. Phys. Proc. 41, 31–37 (2013)CrossRefGoogle Scholar
  23. 23.
    DuPont, J.N.; Lippold, J.C.; Kiser, S.D.: Welding Metallurgy and Weldability of Nickel-Base Alloys. Wiley, New Jersey (2009)CrossRefGoogle Scholar
  24. 24.
    Huang, C.A.; Wang, T.H.; Han, W.C.; Lee, C.H.: A study of the galvanic corrosion behavior of Inconel 718 after electron beam welding. Mater. Chem. Phys. 104, 293–300 (2007)CrossRefGoogle Scholar
  25. 25.
    Lameche-Djeghaba, S.; Benchettara, A.; Kellou, F.; Ji, V.: Electrochemical behaviour of pure aluminium and Al-5% Zn alloy in 3% NaCl solution. Arab. J. Sci. Eng. 39, 113–122 (2014)CrossRefGoogle Scholar
  26. 26.
    Fattah-Alhosseini, A.; Jalali, A.; Felegari, S.: Electrochemical behavior of the passive films formed on alloy 22 (UNS N06022) in acidic solutions. Arab. J. Sci. Eng. 40, 2985–2991 (2015)CrossRefGoogle Scholar
  27. 27.
    Kangazian, J.; Shamanian, M.; Ashrafi, A.: Dissimilar welding between SAF 2507 stainless steel and Incoloy 825 Ni-based alloy: the role of microstructure on corrosion behavior of the weld metals. J. Manuf. Process. 29, 376–388 (2017)CrossRefGoogle Scholar
  28. 28.
    Xu, H.; Xu, M.J.; Yu, C.; Lu, H.; Wei, X.; Chen, J.M.; Xu, J.J.: Effect of the microstructure in unmixed zone on corrosion behavior of 439 tube/308L tube-sheet welding joint. J. Mater. Process. Technol. 240, 162–167 (2017)CrossRefGoogle Scholar
  29. 29.
    Singh, J.; Shahi, A.S.: Weld joint design and thermal aging influence on the metallurgical, sensitization and pitting corrosion behavior of AISI 304L stainless steel welds. J. Manuf. Process. 33, 126–135 (2018)CrossRefGoogle Scholar
  30. 30.
    Shamir, M.; Junaid, M.; Khan, F.N.; Taimoor, A.A.; Baig, M.N.: A comparative study of electrochemical corrosion behavior in Laser and TIG welded Ti–5Al–2.5 Sn alloy. J. Mater. Res. Technol. 1–12 (2017)Google Scholar
  31. 31.
    Ma, S.; Zhao, Y.; Zou, J.; Yan, K.; Liu, C.: The effect of laser surface melting on microstructure and corrosion behavior of friction stir welded aluminum alloy 2219. Opt. Laser. Technol. 96, 299–306 (2017)CrossRefGoogle Scholar
  32. 32.
    Gharavi, F.; Matori, K.A.; Yunus, R.; Othman, N.K.; Fadaeifard, F.: Corrosion evaluation of friction stir welded lap joints of AA6061-T6 aluminum alloy. Trans. Nonferrous. Met. Soc. China 26, 684–696 (2016)CrossRefGoogle Scholar
  33. 33.
    Garcia, C.; Martin, F.; De Tiedra, P.; Blanco, Y.; Lopez, M.: Pitting corrosion of welded joints of austenitic stainless steels studied by using an electrochemical minicell. Corros. Sci. 50, 1184–1194 (2008)CrossRefGoogle Scholar
  34. 34.
    Muñoz, A.I.; Antón, J.G.; Nuévalos, S.L.; Guiñón, J.L.; Herranz, V.P.: Corrosion studies of austenitic and duplex stainless steels in aqueous lithium bromide solution at different temperatures. Corros. Sci. 46, 2955–2974 (2004)CrossRefGoogle Scholar
  35. 35.
    Bal, K.S.; Dutta Majumdar, J.; Roy Choudhury, A.: Study on uni-axial tensile strength properties of Ytterbium fiber laser welded Hastelloy C-276 sheet. Opt. Laser. Technol. 108, 392–403 (2018)CrossRefGoogle Scholar
  36. 36.
    Montgomery, D.C.: Design and Analysis of Experiments. Wiley, New Delhi (2014)Google Scholar
  37. 37.
    Minitab®18 support: What is thedifference between coded units and uncoded units. Minitab Inc. (2018). Accessed 04 June 2018
  38. 38.
    Fernández-Solis, C.D.; Vimalanandan, A.; Altin, A.; Mondragón-Ochoa, J.S.; Kreth, K.; Keil, P.; Erbe, A.: Fundamentals of Electrochemistry, Corrosion and Corrosion Protection. In: Lang, P.R., Liu, Y. (eds.) Soft Matter at Aqueous Interfaces, pp. 34–36. Springer, Switzerland (2016)Google Scholar
  39. 39.
    Baboian, R.: Corrosion Tests and Standards: Application and Interpretation. ASTM International, Pennsylvania (2005)CrossRefGoogle Scholar
  40. 40.
    Baboian, R.; Haynes, G.S.: Cyclic Polarization Measurements-Experimental Procedure and Evaluation of Test Data. In: Mansfeld, F., Bertocci, U. (eds.) Electrochemical Corrosion Testing, pp. 274–282. American Society for Testing and Materials, Ohio (1981)CrossRefGoogle Scholar
  41. 41.
    ASTM G61 - 86 (Reapproved 2014): Standard TestMethod for Conducting Cyclic Potentiodynamic PolarizationMeasurements for Localized Corrosion Susceptibility of Iron-,Nickel-, or Cobalt-Based Alloys. ASTM International. (2014). Accessed 04 June 2018

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Kalinga Simant Bal
    • 1
  • Jyotsna Dutta Majumdar
    • 2
  • Asimava Roy Choudhury
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringIndian Institute of Technology, KharagpurKharagpurIndia
  2. 2.Department of Metallurgical and Materials EngineeringIndian Institute of Technology, KharagpurKharagpurIndia

Personalised recommendations