Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1569–1581 | Cite as

Ageing Behaviour of Sc-Doped Cu–Zn–Al Shape Memory Alloys

  • Gourab Saha
  • Manojit Ghosh
  • Ajesh Antony
  • Koushik Biswas
Research Article - Mechanical Engineering


The effect of scandium (Sc), when added in trace, on the ageing behaviour of Cu–Zn–Al shape memory alloy was investigated in the present work. Cu–Zn–Al shape memory alloy was prepared by melting 70:30 brass using commercial grade Cu strips and Al chips. Sc was added using Al–Sc 2 wt% master alloy at the time of melting, and the final composition was adjusted to 0.1 wt% Sc. Chemical composition of the alloys was analysed by using EDAX and spectrometer. The influence of Sc on mechanical properties under different ageing conditions were primarily evaluated by Vickers hardness test. Optical and scanning electron microscopy (SEM) was used to analyse the microstructure. Differential scanning calorimetry was used to measure the transformation temperatures, correspond to martensite to austenite or the reverse transformation. Thermo-Calc software was used to construct a phase fraction diagram as a function of temperature to obtain the evolving phases during quenching and subsequent ageing process for both of the alloy systems. The ageing behaviour was also examined using XRD and SEM characterization and explained in the light of phase predictions obtained from the thermodynamic calculations. Subsequently, transmission electron microscopy investigation was carried out to evaluate the influence of Sc on the size and habit planes of the precipitates in Cu–Zn–Al ternary alloy system. Sc has been found to reduce the transformation temperature and consequently increase the mobility of the martensite/austenite interface.


Shape memory alloys Sc addition Ageing Microhardness Precipitates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We sincerely thank Dr. D.Y. Cong, Prof. M.R. Barnett, and Prof. M. K Banerjee for providing their significant insight and expertise that greatly assisted the research.


  1. 1.
    Stalmans, R.; Humbeeck, J.V.; Delaey, L.: Degradation of the shape-memory effect in copper-base alloys. Scr. Metall. Mater. 31(11), 1573–1576 (1994)CrossRefGoogle Scholar
  2. 2.
    Otsuka, K.; Wayman, C.M.: Mechanism of shape memory effect and superelasticity. In: Otsuka, K., Wayman, C.M. (eds.) Shape Memory Materials, pp. 27–48. Cambridge University Press, Cambridge (1998)Google Scholar
  3. 3.
    Tadaki, T.; Otsuka, K.; Shimizu, K.: Shape memory alloys. Ann. Rev. Mater. Sci. 18(1), 25–45 (1988)CrossRefGoogle Scholar
  4. 4.
    Asanović, V.; Delijić, K.; Jauković, N.: A study of transformations of \(\beta \)-phase in Cu–Zn–Al shape memory alloys. Scr. Mater. 58(7), 599–601 (2008)CrossRefGoogle Scholar
  5. 5.
    Funakubo, H.: Shape Memory Alloys. Taylor & Francis, Milton Park (1987)Google Scholar
  6. 6.
    Dasgupta, R.; Jain, A.K.; Kumar, P.; Hussein, S.; Pandey, A.: Effect of alloying constituents on the martensitic phase formation in some Cu-based SMAs. J. Mater. Res. Technol. 3(3), 264–273 (2014)CrossRefGoogle Scholar
  7. 7.
    Bhattacharya, S.; Bhuniya, A.; Banerjee, M.K.: Influence of minor additions on characteristics of Cu–Al–Ni alloy. Mater. Sci. Technol. 9(8), 654–658 (1993)CrossRefGoogle Scholar
  8. 8.
    Bruke, R.J.: In: Wang, F.F.Y. (ed.) Ceramic Fabrication Processes, p. 331. Academic Press, New York (1976)Google Scholar
  9. 9.
    Bhuniya, A.K.; Datta, S.; Chattopadhyay, P.P.; Banerjee, M.K.: Effect of trace addition on the microstructural degradation of Cu–Zn–AI shape memory alloy. In: Proceedings of Seminar on Resurgence of Metallic Materials the Current Scenario (ROMM-2002), 24–25 Oct 2002. National Metallurgical Laboratory(CSIR), Jamshedpur (2002)Google Scholar
  10. 10.
    Miyazaki, S.; Otsuka, K.: Development of shape memory alloys. ISIJ Int. 29(5), 353–377 (1989)CrossRefGoogle Scholar
  11. 11.
    Delaey, L.; Deruyttere, A.; Aernoudt, N.; Roos, J.R.: Shape Memory Effect, Super-Elasticity and Damping in Cu–Zn–Al Alloys. INCRA Research Report (Project No. 238), Feb 1978Google Scholar
  12. 12.
    Otsuka, K.; Wayman, C.M.: Shape Memory Materials. Cambridge University Press, Cambridge (1999)Google Scholar
  13. 13.
    Tarhan, E.: Ageing characteristics of copper based shape memory alloys. Ph.D. Dissertation, The Middle East Technical University (2004)Google Scholar
  14. 14.
    Miyazaki, S.; Otsuka, K.: In: Funakubo, H. (ed.) Shape Memory Alloys, p. 116. Gordon and Breach Science Publishers, Philadelphia (1984)Google Scholar
  15. 15.
    Tarhan, E.: Ageing characteristics of copper based shape memory alloys. Thesis (2004)Google Scholar
  16. 16.
    Otsuka, K.; Ren, X.: Mechanism of martensite aging effect. Scr. Mater. 50(2), 207–212 (2004)CrossRefGoogle Scholar
  17. 17.
    Otsuka, K.; Ren, X.: A comparative study of elastic constants of Ti–Ni-based alloys prior to martensitic transformation. Mat. Sci. Eng. A312, 196–206 (2001).
  18. 18.
    Ahlers, M.; Pelegrina, J.L.: Ageing of martensite: stabilisation and ferroelasticity in Cu-based shape memory alloys. Mater. Sci. Eng. A 356(1–2), 298–315 (2003)CrossRefGoogle Scholar
  19. 19.
    Guilemany, J.M.; Gill, F.J.: Kinetic grain growth in Cu-Zn-Al shape memory alloys. J. Mater. Sci. 26, 4626 (1991). CrossRefGoogle Scholar
  20. 20.
    Adachi, K.S.K.; Hamada, Y.: Formation of (X) phases and origin of grain refinement effect in Cu–Al–Ni shape memory alloys added with titamium. ISIJ Int. 29, 378–387 (1989)CrossRefGoogle Scholar
  21. 21.
    Gil, F.J.; Guilemany, J.M.: Effect of cobalt addition on grain growth kinetics in Cu–Zn–Al shape memory alloys. Intermetallics 6(5), 445–450 (1998)CrossRefGoogle Scholar
  22. 22.
    Bhuniya, A.K.; Chattopadhyay, P.P.; Datta, S.; Banerjee, M.K.: On the degradation of shape memory effect in trace Ti-added Cu–Zn–Al alloy. Mater. Sci. Eng. A 393(1–2), 125–132 (2005)CrossRefGoogle Scholar
  23. 23.
    Bhuniya, A.K.; Chattopadhyay, P.P.; Datta, S.; Banerjee, M.K.: Study on the effect of trace zirconium addition on the microstructural evolution in Cu–Zn–Al shape memory alloy. Mater. Sci. Eng. A 391(1–2), 34–42 (2005)CrossRefGoogle Scholar
  24. 24.
    Xu, J.W.: Effects of Gd addition on microstructure and shape memory effect of Cu–Zn–Al alloy. J. Alloys Compd. 448(1–2), 331–335 (2008)CrossRefGoogle Scholar
  25. 25.
    Røyset, J.; Ryum, N.: Scandium in aluminium alloys. Int. Mater. Rev. 50(1), 19–44 (2005)CrossRefGoogle Scholar
  26. 26.
    Datta, S.; Bhunya, A.; Banerjee, M.K.: Two way shape memory loss in Cu–Zn–Al alloy. Mater. Sci. Eng. A 300(1–2), 291–298 (2001)CrossRefGoogle Scholar
  27. 27.
    Sundman, B.; Jansson, B.; Andersson, J.-O.: The thermo-calc databank system. Calphad 9(2), 153–190 (1985)CrossRefGoogle Scholar
  28. 28.
    Thermo-calc thermodynamic equilibrium calculations. Thermo-Calc Software, Stockholm. Accessed 5 Aug 2018
  29. 29.
    Deltell, A.; Escoda, L.; Saurina, J.; Suñol, J.J.: Martensitic transformation in Ni–Mn–Sn–Co heusler alloys. Metals 5(2), 695–705 (2015)CrossRefGoogle Scholar
  30. 30.
    Petalis, P.; Makris, N.; Psarras, G.C.: Investigation of the phase transformation behaviour of constrained shape memory alloywires. J. Thermal Anal. Calorim. 84(1), 219–224 (2006)CrossRefGoogle Scholar
  31. 31.
    Cong, D.Y.; Saha, G.; Barnett, M.R.: Thermomechanical properties of Ni–Ti shape memory wires containing nanoscale precipitates induced by stress-assisted ageing. Acta Biomater. 10(12), 5178–5192 (2014)CrossRefGoogle Scholar
  32. 32.
    Lagoudas, D.C.: Shape Memory Alloys: Modeling and Engineering Applications. Springer, New York (2008)zbMATHGoogle Scholar
  33. 33.
    Dasgupta, R.; Jain, A.K.; Kumar, P.; Hussain, S.; Pandey, A.: Role of alloying additions on the properties of Cu–Al–Mn shape memory alloys. J. Alloys Compd. 620, 60–66 (2015)CrossRefGoogle Scholar
  34. 34.
    Dwight, A.E.; Kimball, C.W.: ScT2X and LnT2X compounds with the MnCu2al-type structure. J. Less Common Met. 127, 179–182 (1987)CrossRefGoogle Scholar
  35. 35.
    Pisch, A.: Al–Cu–Sc (aluminium–copper–scandium). In: Effenberg, G., Ilyenko, S. (eds.) Light Metal Systems, Part 2, pp. 1–8. Springer, Berlin (2005)Google Scholar
  36. 36.
    Gao, Y.; Zhu, M.; Lai, J.K.L.: Microstructure characterization and effect of thermal cycling and ageing on vanadium-doped Cu–Al–Ni–Mn high-temperature shape memory alloy. J. Mater. Sci. 33(14), 3579–3584 (1998)CrossRefGoogle Scholar
  37. 37.
    Kwarciak, J.: Phase transformations in Cu–Al and Cu–Zn–Al alloys. J. Thermal Anal. Calorim. 31(3), 559–566 (1986)CrossRefGoogle Scholar
  38. 38.
    Occampo, G.: Sur la décomposition thermique après trempe de la\(\beta \) phase de l’alliage Cu–10.1%Al–influence du nickel et du fer. Thesis, Paris (1980)Google Scholar
  39. 39.
    Greninger, A.B.: The martensite transformation in beta copper-aluminium alloys. AIME Trans. 133, 204–227 (1939)Google Scholar
  40. 40.
    Castro, M.L.; Romero, R.: Isothermal \(\gamma \) precipitation in a \(\beta \) Cu–Zn–Al alloy. Mater. Sci. Eng. A 255(1–2), 1–6 (1998)CrossRefGoogle Scholar
  41. 41.
    Ahlers, M.; Pelegrina, J.L.: Ageing of martensite: stabilisation and ferroelasticity in Cu-based shape memory alloys. Mater. Sci. Eng. A 356(1–2), 298–315 (2003)CrossRefGoogle Scholar
  42. 42.
    Seguí, C.; Cesari, E.: Characteristics of martensite stabilization in a high temperature Cu–Zn–Al alloy. J. Phys. IV 5(C8), C8-835–C8-840 (1995)Google Scholar
  43. 43.
    Leu, S.S.; Hu, C.T.: The aging effect on Cu–Zn–Al shape memory alloys with low contents of aluminum. MTA 22(1), 25–33 (1991)CrossRefGoogle Scholar
  44. 44.
    Kwarciak, J.; Bojarski, Z.; Morawiec, H.: Phase transformation in martensite of Cu–12.4% Al. J. Mater. Sci. 21(3), 788–792 (1986)CrossRefGoogle Scholar
  45. 45.
    Leu, S.S.; Hu, C.T.: Effect of aluminum content on precipitation in Cu–Zn–Al shape memory alloys, pp. 593–598. Referred, In: Shuchuan, C., Hsu, T.Y, Fan, Y., Jihau, Z. (eds) Stabilization of Martensite and Ordering of the Parent Phase in a CuZnAl Alloy, Proceedings of ICOMAT-92, Monterey, USA 20–24 July 1992, Perkins, J. (ed.), pp. 599–604. Monterey Institute for Advanced Studies, Monterey (1993)Google Scholar
  46. 46.
    Kayali, N.; Ozgen, S.; Adiguzel, O.: The influence of ageing on martensite morphology in shape memory CuZnAl alloys. J. Phys. IV 07(C5), C5-317–C5-322 (1997)Google Scholar
  47. 47.
    Wong, M.J.: Development of precipitation hardenable Al–Sc–Zr–Hf quaternary alloys through thermodynamic modeling, and room-temperature and elevated temperature hardness. ME Thesis, Michigan Technological University (2014)Google Scholar
  48. 48.
    Fan, Y.: Precipitation strengthening of aluminum by transition metal aluminides. ME Thesis, Worcester Polytechinc Institute (2012)Google Scholar
  49. 49.
    Kaiser, M.: Effect of trace scandium addition on Al-6 mg alloy. J. Mech. Eng. 36, 12–17 (2006)Google Scholar
  50. 50.
    Pons, J.; Portier, R.: Accommodation of \(\gamma \)-phase precipitates in CuZnAl shape memory alloys studied by high resolution electron microscopy. Acta Mater. 45, 2109–2120 (1997)CrossRefGoogle Scholar
  51. 51.
    Sen, R.; Ghosh, M.; Kaiser, M.S.: Microstructure-texture-fracture toughness property correlation in annealed Al-6 Mg alloy with minor scandium and zirconium additions. Fatigue Fract. Eng. Mater. Struct. 35, 1071–1078 (2012)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Gourab Saha
    • 1
    • 2
    • 3
  • Manojit Ghosh
    • 2
  • Ajesh Antony
    • 3
  • Koushik Biswas
    • 4
  1. 1.Materials Science, Tampere Wear CenterTampere University of TechnologyTampereFinland
  2. 2.Department of Metallurgy and Materials EngineeringIndian Institute of Engineering Science and TechnologyShibpur, HowrahIndia
  3. 3.Institute for Frontier MaterialsDeakin UniversityGeelongAustralia
  4. 4.Department of Metallurgical and Materials EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations