Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1525–1541 | Cite as

Thermal Slip in Oblique Radiative Nano-polymer Gel Transport with Temperature-Dependent Viscosity: Solar Collector Nanomaterial Coating Manufacturing Simulation

  • R. MehmoodEmail author
  • Rabil Tabassum
  • S. Kuharat
  • O. Anwar Bég
  • M. Babaie
Research Article - Mechanical Engineering
  • 24 Downloads

Abstract

Nano-polymeric solar paints and sol–gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics, the present article presents a mathematical and computational study of the steady, two-dimensional,non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol–gels under radiative heat flux. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The conservation equations for mass, normal and tangential momentum and energy are normalized via appropriate transformations to generate a multi-degree, ordinary differential, nonlinear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge–Kutta–Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a variational iterative method utilizing Lagrangian multipliers. The impact of key emerging dimensionless parameters, i.e. obliqueness parameter, radiation–conduction Rosseland number (Rd), thermal slip parameter\((\alpha )\), viscosity parameter (m), nanoparticles volume fraction\((\phi )\), on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect, whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures.

Keywords

Non-orthogonal stagnation-point flow Thermal slip Variable viscosity Thermal radiation flux model Solar nano-polymer coating manufacture Copper volume fraction 

Nomenclature

\(\hat{{u}}\)

\(\hat{{x}}\)-component of velocity \(\left( {\hbox {m}/\hbox {s}}\right) \)

\(\hat{{v}}\)

\(\hat{{y}}\)-component of velocity \(\left( {\hbox {m}/\hbox {s}}\right) \)

\(\hat{{T}}\)

Temperature \(\left( \hbox {K}\right) \)

\(\hat{{T}}_{\mathrm{w}}\)

Wall temperature \(\left( \hbox {K}\right) \)

\(\hat{{T}}_\infty \)

Ambient temperature \(\left( \hbox {K}\right) \)

\(\hat{{p}}\)

Pressure \(\left( {\hbox {N}/\hbox {m}^{2}}\right) \)

\(\hat{{x}},\hat{{y}}\)

Cartesian coordinates along the stretching surface and normal to it \(\left( \hbox {m}\right) \)

\(\hat{{q}}_{\mathrm{r}}^{*}\)

Radiative thermal linearized heat flux

\({K}^{*}\)

Rosseland mean absorption coefficient

\(\hat{\delta }^{*}\)

Stefan–Boltzmann constant

a / c

Stretching ratio

d

Reynolds viscosity variation exponent

\(\hat{{D}}\)

Thermal slip factor

m

Variable viscosity parameter

\({c}_{\hat{\mathrm{p}}}\)

Specific heat \(\left( {\frac{\hbox {J}}{\hbox {kg}\,\hbox {K}}}\right) \)

Pr

Prandtl number

Rd

Radiation–conduction parameter

\(\hat{{k}}\)

Thermal conductivity \(\left( {\frac{\hbox {W}}{\hbox {m}\,\hbox {K}}}\right) \)

Greek Symbols

\(\alpha \)

Thermal slip parameter

\(\phi \)

Solid volume fraction of nanoparticles

\(\mu _0\)

Reference viscosity \(\left( {\frac{\hbox {kg}}{\hbox {m}\,\hbox {s}}}\right) \)

\(\hat{\nu }\)

Kinematics viscosity \(\left( {\hbox {m}^{2}/\hbox {s}}\right) \)

\(\hat{\rho }\)

Density \(\left( {\hbox {kg}/\hbox {m}^{3}}\right) \)

\(\gamma \)

Flow obliqueness parameter

\(\hat{\mu }\)

Dynamic viscosity \(\left( {\frac{\hbox {kg}}{\hbox {m}\,\hbox {s}}}\right) \)

Subscripts

\(\hbox {f}\)

Base fluid

\(\hbox {s}\)

Nanoparticles

\(\hbox {nf}\)

Nanofluid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors appreciate the reviewer comments which have improved the present work.

Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no conflict of interest with any individual or organization regarding this articles content.

References

  1. 1.
    Liu, J.; Bashir, S.: Advanced Nanomaterials and Their Applications in Renewable Energy, 1st edn. Elsevier, Amsterdam (2015)Google Scholar
  2. 2.
    Paone, A.; Joly, M.; Sanjines, R.; Romanyuk, A.; Scartezzini, J.-L.; et al.: Thermochromic films of VO2: W for smart solar energy applications. SPIE Optics & Photonics Conference, San Diego, California, USA (2009)Google Scholar
  3. 3.
    Joly, M.; Bouvard, O.; Gascou, T.; Antonetti, Y.; Python, M.; et al.: Optical and structural analysis of sol-gel derived Cu–Co–Mn–Si oxides for black selective solar nanocomposite multilayered coatings. Solar Energy Mater. Solar Cells 143, 573–580 (2015)CrossRefGoogle Scholar
  4. 4.
    Chen, C.-C.: Visibly transparent polymer solar cells produced by solution processing. ACS Nano 6(8), 7185–7190 (2012)CrossRefGoogle Scholar
  5. 5.
    Joly, M.; Antonetti, Y.; Python, M.; Lazo, G.; Aymara, M.; et al.: Selective solar absorber coatings on receiver tubes for CSP—energy-efficient production process by sol-gel dip-coating and subsequent induction heating. ISES Solar World Congress, Cancun, Mexico (2014)Google Scholar
  6. 6.
    Schueler, A.; Deepanshu, D.; De Chambrier, E.; Roecker, C.; De Temmerman, G.; et al.: Sol–gel deposition and optical characterization of multilayered \({\rm SiO}_{2}/{\rm Ti}1-{\rm xSixO}_{2}\) coatings on solar collector glasses. Solar Energy Mater. Solar Cells 90, 2894–2907 (2006)CrossRefGoogle Scholar
  7. 7.
    Joly, M.; Antonetti, Y.; Python, M.; Gonzalez, M.; Gascou, T.; et al.: Energy-efficient sol–gel process for production of nanocomposite absorber coatings for tubular solar thermal collectors. CISBAT Conference, Lausanne, Switzerland (2013)Google Scholar
  8. 8.
    Choi, S.U.S.; Eastman, J.A.: Enhancing Thermal Conductivity of Fluids with Nanoparticles. ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA (1995)Google Scholar
  9. 9.
    Anwar Bég, O.: Nonlinear multi-physical laminar nanofluid bioconvection flows: Models and computation, A. Sohail, Z. Li (Eds.): Computational Approaches in Biomedical Nano-Engineering, Chapter 5, pp. 113–145. Wiley (2018)Google Scholar
  10. 10.
    Brimmo, A.T.; et al.: Stagnation-point flows in analytical chemistry and life sciences. RSC Adv. 7, 51206–51232 (2017)CrossRefGoogle Scholar
  11. 11.
    Bachok, N.; Ishak, A.; Pop, I.: The boundary layers of an unsteady stagnation-point flow in a nanofluid. Int. J. Heat Mass Transf. 55, 6499–6505 (2012)CrossRefGoogle Scholar
  12. 12.
    Uddin, M.J.; Khan, W.A.; Ismail, AIMd; Anwar Bég, O.: Computational study of three-dimensional stagnation point nanofluid bio-convection flow on a moving surface with anisotropic slip and thermal jump effects. ASME J. Heat Transf. 138(10), 104502–104509 (2016)CrossRefGoogle Scholar
  13. 13.
    Hamid, R.A.; Nazar, R.; Pop, I.: Non-alignment stagnation-point flow of a nanofluid past a permeable stretching/shrinking sheet: Buongiorno’s model, Scientific Reports, 5, 14640, 06.10.2015 (2015)Google Scholar
  14. 14.
    Duxson, P.; Lukey, G.C.; van Deventer, J.S.J.: Evolution of gel structure during thermal processing of Na-geopolymer gels. Langmuir 22(21), 8750–8757 (2006)CrossRefGoogle Scholar
  15. 15.
    Scharber, M.C.; Sariciftci, N.S.: Efficiency of bulk-heterojunction organic solar cells. Prog. Polym. Sci. 38, 1929–1940 (2013)CrossRefGoogle Scholar
  16. 16.
    Viskanta, R.: Radiation heat transfer in materials processing and manufacturing. In: Bejan, A. (ed.) Energy and the Environment, pp. 101–112. Kluwer, New York (1999)CrossRefGoogle Scholar
  17. 17.
    Chandrasekhar, S.: Radiative Transfer. Pergamon, New York (1960)zbMATHGoogle Scholar
  18. 18.
    Siegel, R.; Howell, J.R.: Thermal Radiation Heat Transfer. MacGraw Hill, New York (1972)Google Scholar
  19. 19.
    Ferdows, M.; Khan, M.S.; Anwar Bég, O.; Azad, M.A.K.; Alam, M.M.: Numerical study of transient magnetohydrodynamic radiative free convection nanofluid flow from a stretching permeable surface. Proc. IMechE-Part E J. Process Mech. Eng. 228(3), 181–196 (2014)CrossRefGoogle Scholar
  20. 20.
    Anwar Bég, O.; Ferdows, M.; Bég, Tasveer A.; Ahmed, T.; Wahiduzzaman, M.; Alam, Md M.: Radiative optically-dense magnetized transient reactive transport phenomena with cross diffusion and dissipation effects: numerical simulations. J. Taiwan Inst. Chem. Eng. 66, 12–26 (2016)CrossRefGoogle Scholar
  21. 21.
    Thumma, T.; Anwar Bég, O.; Sheri, S. R.: Finite element computation of magnetohydrodynamic nanofluid convection from an oscillating inclined plate with radiative flux, heat source and variable temperature effects, Proc. IMechE- Part N–J. Nanoengineering Nanomaterials and Nanosystems, UK (2017).  https://doi.org/10.1177/2397791417731452 (16 pages)
  22. 22.
    Perše, L.S.; et al.: Rheological and optical properties of solar absorbing paints with POSS-treated pigments. Mater. Chem. Phys. 149, 368–377 (2015)Google Scholar
  23. 23.
    Perše, L.S.; et al.: The role of rheological properties and spraying parameters on the spectral selectivity of Thickness Insensitive Spectrally Selective (TISS) paint coatings. Solar Energy Mater. Solar Cells 110, 115–125 (2013)CrossRefGoogle Scholar
  24. 24.
    Wijewardane, S.; Goswami, D.Y.: A review on surface control of thermal radiation by paints and coatings for new energy applications. Renew. Sustain. Energy Rev. 16, 1863–1873 (2012)CrossRefGoogle Scholar
  25. 25.
    Atkinson, C.; et al.: Coatings for concentrating solar systems—a review. Renew. Sustain. Energy Rev. 45, 113–122 (2015)CrossRefGoogle Scholar
  26. 26.
    Uddin, Md Jashim; Yusoff, N.H.Md; Anwar Beg, O.; Ismail, A.I.: Lie group analysis and numerical solutions for non-Newtonian nanofluid flow in a porous medium with internal heat generation. Phys. Scr. 87, 025401 (2013). (14pp)CrossRefzbMATHGoogle Scholar
  27. 27.
    Bhatti, M.M.; Rashidi, M.M.: Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet. J. Mol. Liq. 221, 567–573 (2016)CrossRefGoogle Scholar
  28. 28.
    Hayat, T.; Gull, N.; Farooq, M.; Ahmad, B.: Thermal radiation effects in MHD flow of Powell–Eyring nanofluid induced by a stretching cylinder. ASCE J. Aerosp. Eng. 29, 20–30 (2016)Google Scholar
  29. 29.
    Huda, A.B.; Akbar, N.S.; Anwar Bég, O.; Khan, M.Y.: Dynamics of variable-viscosity nanofluid flow with heat transfer in a flexible vertical tube with propagating waves. Results Phys. 7, 413–425 (2017)CrossRefGoogle Scholar
  30. 30.
    Rana, P.; Bhargava, R.; Anwar Bég, O.; Kadir, A.: Finite element analysis of viscoelastic nanofluid flow with energy dissipation and internal heat source/sink effects. Int. J. Appl. Comput. Math. 3(2), 1421–1447 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Prasad, V.R.; Gaffar, S.A.; Anwar Bég, O.: Heat and mass transfer of a nanofluid from a horizontal cylinder to a micropolar fluid. AIAA J. Thermophys. Heat Trans. 29(1), 127–139 (2015)CrossRefGoogle Scholar
  32. 32.
    Stoyanov, O.V. (ed.): Nanopolymers and Modern Materials: Preparation, Properties and Applications. CRC Press, Boca Raton (2013)Google Scholar
  33. 33.
    Pal, D.; Mandal, G.: Influence of Lorentz force and thermal radiation on heat transfer of nanofluids over a stretching sheet with velocity thermal slip. Int. J. Appl. Comput. Math. 2, 1–20 (2016)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Latiff, N.A.; Uddin, M.J.; Anwar Bég, O.; Ismail, A.I.M.: Unsteady forced bioconvection slip flow of a micropolar nanofluid from a stretching/shrinking sheet. Proc. IMECHE—Part N J. Nanoeng. Nanosyst. 230(4), 177–187 (2016)Google Scholar
  35. 35.
    Uddin, M.J.; Khan, W.A.; Anwar Bég, O.: Bioconvection nanofluid slip flow past a wavy surface with applications in nano-biofuel cells Chin. J. Phys. 55, 2048–2063 (2017)Google Scholar
  36. 36.
    Turkyilmazoglu, M.: Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids. Chem. Eng. Sci. 84, 182–187 (2012)CrossRefGoogle Scholar
  37. 37.
    Nagendra, N.; Subba Rao, A.; Amanulla, C.H.; Surya Narayana Reddy, M.; Anwar Bég, O.: Hydromagnetic non-Newtonian nanofluid transport phenomena past an isothermal vertical cone with partial slip: aerospace nanomaterial enrobing simulation; Heat Transfer-Asian Research (2017).  https://doi.org/10.1002/htj.21299
  38. 38.
    Ibrahim, W.; Shankar, B.: MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary conditions. Comput. Fluids 75, 1–10 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Abdul Hakeem, A.K.; Vishnu, N.; Ganga, G.B.: Magnetic field effect on second order slip flow of nanofluid over a stretching/shrinking sheet with thermal radiation effect. J. Magn. Magn. Mater. 381, 243–257 (2015)CrossRefGoogle Scholar
  40. 40.
    Dhana, R.; Rana, P.; Kumar, L.: MHD mixed convection nanofluid flow and heat transfer over an inclined cylinder due to velocity and thermal slip effects: Buongiorno’s model. Powder Technol. 288, 140–150 (2016)CrossRefGoogle Scholar
  41. 41.
    Prabhakar, B.; Bandari, S.; Kumar, C.K.: Effects of inclined magnetic field and chemical reaction on flow of a Casson nanofluid with second order velocity slip and thermal slip over an exponentially stretching sheet. Int. J. Appl. Comput. Math. 3(4), 2967–2985 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Throne, J.L.: Radiant Heat Transfer in Thermoforming. SPE Annual Technical Conference—ANTEC’95. Brookfield, USA (1995)Google Scholar
  43. 43.
    Cess, R.D.: The interaction of thermal radiation with free convection heat transfer. Int. J. Heat Mass Transf. 9, 1269–77 (1966)CrossRefzbMATHGoogle Scholar
  44. 44.
    Anwar Bég, O.; Ali, N.; Zaman, A.; Eemaan, T.; Bég, A.; Sohail, Ayesha: Computational modelling of heat transfer in annular porous medium solar energy absorber with a P1-radiative differential approximation. J. Taiwan Inst. Chem. Eng. 66, 258–268 (2016)CrossRefGoogle Scholar
  45. 45.
    Kuharat, S.; Anwar Bég, O.; Kadir, A., Babaie, M.: Computational fluid dynamic simulation of a solar enclosure with radiative flux and different metallic nano-particles, International Conference on Innovative Applied Energy (IAPE’19), St Cross College, University of Oxford, United Kingdom (To be presented)Google Scholar
  46. 46.
    Modest, M.: Radiative Heat Transfer. McGraw-Hill, New York, USA (1993)Google Scholar
  47. 47.
    Khan, W.A.; Makinde, O.D.; Khan, Z.H.: Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat. Int. J. Heat Mass Transf. 96, 525–534 (2016)CrossRefGoogle Scholar
  48. 48.
    Uddin, M.J.; Alginahi, Y.; Bég, O.A.; Kabir, M.N.: Numerical solutions for gyrotactic bioconvection in nanofluid-saturated porous media with Stefan blowing and multiple slip effects. Comp. Math. Appl. 72, 2562–2581 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Hamad, M.A.; Pop, I.; Ismail, A.I.M.: Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate. Nonlinear Anal. Real World Appl. 12, 1338–1346 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Uddin, M.J.; Anwar Bég, O.; Amin, N.S.: Hydromagnetic transport phenomena from a stretching or shrinking nonlinear nanomaterial sheet with Navier slip and convective heating: a model for bio-nano-materials processing. J. Magn. Magn. Mater. 368, 252–261 (2014)CrossRefGoogle Scholar
  51. 51.
    Bradie, B.: A Friendly Introduction to Numerical Analysis. Pearson Prentice Hall, Upper Saddle River (2006)Google Scholar
  52. 52.
    Keller, H.B.: Numerical Solution of Two-Point Boundary Value Problems. SIAM Press Philadelphia, Philadelphia (1976)CrossRefGoogle Scholar
  53. 53.
    He, J.H.: Variational iteration method-a kind of non-linear analytical technique: some examples. Int. J. Non-Linear Mech. 34, 699–708 (1999)CrossRefzbMATHGoogle Scholar
  54. 54.
    El-Wakil, S.A.; Abulwafa, E.M.: Variational-Iterative Method for conductive-radiative heat transfer in spherical inhomogeneous medium. AIAA J. Thermophys. Heat Trans. 14, 612–615 (2000)CrossRefGoogle Scholar
  55. 55.
    Anwar Bég, O.: Spectral, VIM, ADM and HAM approaches in burn injury bioheat transfer simulation, Technical Report-Gort Engovation-BIO-T-12-2013,75 pages, Trondheim, Norway, February (2013)Google Scholar
  56. 56.
    Anwar Bég, O.; Motsa, S.S.; Islam, M.N.; Lockwood, M.: Pseudo-spectral and variational iteration simulation of exothermically-reacting Rivlin-Ericksen viscoelastic flow and heat transfer in a rocket propulsion duct. Comput. Thermal Sci. 6(2), 91–102 (2014a)CrossRefGoogle Scholar
  57. 57.
    Elsayed, A.F.; Anwar Bég, O.: New computational approaches for biophysical heat transfer in tissue under ultrasonic waves: variational iteration and Chebyshev spectral simulations. J. Mech. Med. Biol. 14(3), 1450043.1–1450043.17 (2014)CrossRefGoogle Scholar
  58. 58.
    Chen, H.; et al.: Rheological behaviour of nanofluids. New J. Phys. 9, 367–380 (2007)CrossRefGoogle Scholar
  59. 59.
    Wedgewood, Lewis: Ketan Joshi Stagnation flow studies of polymer solutions in 2D system. Appl. Rheol. 9, 174–182 (2003)Google Scholar
  60. 60.
    Lee, C.Y.; Tallmadge, T.A.: The stagnation-point in free coating. AIChemEng J. 19, 865–866 (1973)CrossRefGoogle Scholar
  61. 61.
    Paullet, J.; Weidman, P.: Analysis of stagnation point flow toward a stretching sheet. Int. J. Nonlinear Mech. 42, 1084–1091 (2007)CrossRefzbMATHGoogle Scholar
  62. 62.
    Mahapatra, T.R.; et al.: Oblique stagnation-point flow and heat transfer towards a shrinking sheet with thermal radiation. Meccanica 47, 1325–1335 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Lok, Y.Y.: Oblique stagnation slip flow of a micropolar fluid. Meccanica 45, 187–198 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Du, M.; Tang, G.H.: Optical property of nanofluids with particle agglomeration. Solar Energy 122, 864–872 (2015)CrossRefGoogle Scholar
  65. 65.
    Said, Z.; et al.: Radiative properties of nanofluids. Int. Comm. Heat Mass Tran. 46, 74–84 (2013)CrossRefGoogle Scholar
  66. 66.
    Paone, A.; Scartezzini, J.-L.; Schueler, A.; (Dirs.): Switchable Selective Absorber Coatings for Overheating Protection of Solar Thermal Collectors. EPFL, Lausanne, Switzerland (2013)Google Scholar
  67. 67.
    Anwar Bég, O.; Faisal Md Basir, M.; Uddin, M.J.; Ismail, A.I.Md: Numerical study of slip effects on asymmetric bioconvective nanofluid flow in a porous microchannel with an expanding/contracting upper wall using Buongiorno’s model. J. Mech. Med. Biol. 17(5), 1750059 (2017)Google Scholar
  68. 68.
    Buongiorno, J.: Convective transport in nanofluids. ASME J. Heat Trans. 128, 240–250 (2006)CrossRefGoogle Scholar
  69. 69.
    Uddin, M.J.; Anwar Bég, O.; Ismail, A.I.: Radiative-convective nanofluid flow past a stretching/shrinking sheet with slip effects. AIAA J. Thermophys. Heat Trans. 29(3), 513–523 (2015)CrossRefGoogle Scholar
  70. 70.
    Nadeem, S.; Mehmood, R.; Akbar, N.S.: Oblique stagnation point flow of a Casson-nano fluid towards a stretching surface with heat transfer. J Comput. Theor. Nanosci. 11, 1422–1432 (2014)CrossRefGoogle Scholar
  71. 71.
    Kuharat, S.: Simulation of natural convection in enclosure-based spacecraft solar systems, M.Sc. Dissertation, Aerospace Engineering, Department of Aeronautical and Mechanical Engineering, University of Salford, Manchester, UK, 99pp, September (2017)Google Scholar
  72. 72.
    Shi, L.; He, Y.; Huang, Y.; Jiang, B.: Recyclable Fe\(_{3}\)O\(_{4}\)@CNT nanoparticles for high-efficiency solar vapor generation. Energy Convers. Manag. 149, 401–408 (2017)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • R. Mehmood
    • 1
    Email author
  • Rabil Tabassum
    • 1
  • S. Kuharat
    • 2
  • O. Anwar Bég
    • 2
  • M. Babaie
    • 3
  1. 1.Department of Mathematics, Faculty of Natural SciencesHITEC UniversityTaxila CanttPakistan
  2. 2.Propulsion, Hybrid Energy and Medical Engineering Sciences, Department of Mechanical/Aeronautical Engineering, School of Computing, Science and EngineeringSalford UniversityManchesterUK
  3. 3.Energy Sciences, Petroleum and Gas Engineering Division, School of Computing, Science and EngineeringSalford UniversityManchesterUK

Personalised recommendations