Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1475–1488 | Cite as

Numerical Analysis on Effect of Jet Injection on Vortex Shedding for Flow Over a Circular Cylinder

  • S. Karthikeyan
  • S. SenthilkumarEmail author
  • B. T. Kannan
  • U. Chandrasekhar
Research Article - Mechanical Engineering
  • 28 Downloads

Abstract

Two-dimensional numerical investigations on the flow characteristics past a circular cylinder with a jet injection at the rear stagnation point are performed. Transient, incompressible, laminar, and isothermal flow governing equations are solved with finite volume method. Numerical simulations have been carried out at a Reynolds number of 150 with different injection ratios (IR) ranging from 0.5 to 7. Time evolutions of the coefficients of drag and lift, and streamline patterns are plotted. Three different flow pattern ranges are observed, namely wake dominant (IR\(\,=\,\)0–1.5), transition (IR\(\,=\,\)1.5–2.5) and jet dominant (IR > 2.5), and they are characterized by the combined effects of vortex shedding, undulation and jet dominant phenomena appearing in the flow downstream. It is also found that \(C_{\mathrm{d}}\) decreases slightly with the injection ratio up to 1.5, after that it monotonically increases with the injection ratio. The similar incremental trend is observed in the Strouhal number variation with IR up to 1.5; then, it increases almost linearly till IR\(\,=\,\)4. When IR is greater than 4, there is a sudden drop in the Strouhal number value equal to zero and it remains constant after that for all the IR values considered in this study. The power spectral density of \(C_{\mathrm{l} }\) indicates that the dominant frequency is present for the lower IR up to 4 and that no dominant frequency appears in the higher injection ratio range of 5–7 due to a complete suppression of the vortex shedding behind the cylinder by a dominant jet mechanism.

Keywords

Vortex shedding Strouhal number Jet injection Wake Power spectral density Numerical simulation Flow past a cylinder 

List of symbols

IR

Injection ratio

D

Cylinder diameter

\(u_{\mathrm{j}}\)

Jet velocity

\(U_{\infty }\)

Free stream velocity

\(L_{\mathrm{u}}\)

Upstream domain length

\(L_{\mathrm{d}}\)

Downstream domain length

H

Domain height

f

Shedding frequency

St

Strouhal number

\(C_{\mathrm{l}}\)

Lift coefficient

\(C_{\mathrm{d}}\)

Drag coefficient

WDR

Wake dominated range

TR

Transition range

JDR

Jet dominated range

PSD

Power spectral density

x

Axial direction

y

Transverse direction

u

Velocity in the x-direction

v

Velocity in the y-direction

p

Pressure

\(\nu \)

Kinematic viscosity

\(\rho \)

Density

t

Time

\(t_{\mathrm{c}}\)

Time taken for repeating one half cycle

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ong, M.C.; Utnes, T.; Holmedal, L.E.; Myrhaug, D.; Pettersen, B.: Numerical simulation of flow around a smooth circular cylinder at very high Reynolds numbers. J. Mar. Struct. 22(2), 142–153 (2009)CrossRefGoogle Scholar
  2. 2.
    Gillies, E.A.: Low dimensional control of the circular cylinder wake. J. Fluid Mech. 371, 157–178 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Wille, R.: Generation of oscillatory flows. In: Naudascher, E. (ed.) Flow-Induced Structural Vibration, pp. 1–16. Springer, Berlin (1974)Google Scholar
  4. 4.
    Williamson, C.H.K.; Govardhan, R.: Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413–455 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    You, D.; Choi, H.; Choi, M.R.; Kang, S.H.: Control of flow induced noise behind a circular cylinder using splitter plates. AIAA J. 36(11), 1961–1967 (1998)CrossRefGoogle Scholar
  6. 6.
    Karthikeyan, S.; Senthilkumar, S.: Control of vortex shedding behind a circular cylinder using a combination of slot and control plates. In: Saha, A., Das, D., Srivastava, R., Panigrahi, P., Muralidhar, K. (eds.) Fluid Mechanics and Fluid Power—Contemporary Research. Lecture Notes in Mechanical EngineeringSpringer, New Delhi (2017)Google Scholar
  7. 7.
    Roshko, A.: Perspectives on bluff body aerodynamics. J. Wind Eng. Ind. Aerodyn. 49, 79–100 (1993)CrossRefGoogle Scholar
  8. 8.
    Unal, M.F.; Rockwell, D.: On vortex formation from a cylinder, part II: control by splitter-plate interference. J. Fluid Mech. 190, 491–512 (1988)CrossRefGoogle Scholar
  9. 9.
    Oertel Jr., H.: Wakes behind blunt bodies. Annu. Rev. Fluid Mech. 22, 539–564 (1990)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Pier, B.: On the frequency selection of finite-amplitude vortex shedding in the cylinder wake. J. Fluid Mech. 458, 407–417 (2002)CrossRefzbMATHGoogle Scholar
  11. 11.
    Chomaz, J.M.: Global instability in spatially developing flows: non-normality and non-linearity. Annu. Rev. Fluid Mech. 37, 367–392 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hwang, Y.; Choi, H.: Control of absolute instability by basic flow modification in a parallel wake at low Reynolds number. J. Fluid Mech. 560, 465–475 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hwang, Y.; Choi, H.: Sensitivity of global instability of spatially developing flow in weakly and fully nonlinear regimes. Phys. Fluids 20, 071073 (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Marais, C.; Godoy-Diana, R.; Barkley, D.; Wesfreid, J.E.: Convective instability in inhomogeneous media: impulse response in the subcritical cylinder wake. Phys. Fluids 23, 014104 (2011)CrossRefGoogle Scholar
  15. 15.
    Baek, S.; Sung, H.J.: Numerical simulation of the flow behind a rotary oscillating circular cylinder. Phys. Fluids 10, 869 (1998)CrossRefGoogle Scholar
  16. 16.
    Cetiner, O.; Rockwell, D.: Stream-wise oscillations of a cylinder in a steady current. Part 1: locked-on states of vortex formation and loading. J. Fluid Mech. 427, 128 (2001)zbMATHGoogle Scholar
  17. 17.
    Blackburn, H.; Henderson, R.: A study of two-dimensional flow past an oscillating cylinder. J. Fluid Mech. 385, 255–286 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Artana, G.; Sosa, R.; Moreau, E.; Touchard, G.: Control of the near-wake flow around a circular cylinder with electro-hydrodynamic actuators. Exp. Fluids 35(6), 580–588 (2003)CrossRefGoogle Scholar
  19. 19.
    Zhdanov, V.L.; Isaev, S.A.; Niemann, H.J.: Control of the near wake of a circular cylinder in blowing out of low-head jets. J. Eng. Phys. Thermophys. 74(5), 1100–1103 (2001)CrossRefGoogle Scholar
  20. 20.
    Fransson, J.H.M.; Konieczny, P.; Alfredson, P.H.: Flow around a porous cylinder subject to continuous suction or blowing. J. Fluid Struct. 19, 1031–1048 (2004)CrossRefGoogle Scholar
  21. 21.
    Bhattacharyya, S.; Maiti, D.K.; Dhinakaran, S.: Influence of buoyancy on vortex shedding and heat transfer from a square cylinder in proximity to a wall. Numer. Heat Transf. Part A Appl. 50(6), 585–606 (2006)CrossRefGoogle Scholar
  22. 22.
    Strykowski, P.J.; Sreenivasan, K.R.: On the formation and suppression of vortex shedding at low Reynolds numbers. J. Fluid Mech. 218, 71–107 (1990)CrossRefGoogle Scholar
  23. 23.
    Mittal, S.; Raghuvanshi, A.: Control of vortex shedding behind circular cylinder for flows at low Reynolds numbers. Int. J. Numer. Methods Fluids 35, 421–447 (2001)CrossRefzbMATHGoogle Scholar
  24. 24.
    Kuo, C.H.; Chiou, L.C.; Chen, C.C.: Wake flow pattern modified by small control cylinders at low Reynolds number. J. Fluids Struct. 23, 938–956 (2007)CrossRefGoogle Scholar
  25. 25.
    Kuo, C.H.; Chen, C.C.: Passive control of wake flow by two small control cylinders at Reynolds number 80. J. Fluids Struct. 25, 1021–1028 (2009)CrossRefGoogle Scholar
  26. 26.
    Igarashi, T.: Drag reduction of a square prism by flow control using a small rod. J. Wind Eng. Ind. Aerodyn. 69–71, 141–153 (1997)CrossRefGoogle Scholar
  27. 27.
    Sarioglu, M.; Akansu, Y.E.; Yavuz, T.: Control of flow around square cylinders at incidence by using a rod. AIAA J. 43(7), 1419–1426 (2005)CrossRefGoogle Scholar
  28. 28.
    Choi, H.; Jeon, W.P.; Kim, J.: Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40, 113–139 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Mathelin, L.; Bataille, F.; Lallemand, A.: The effect of uniform blowing on the flow past a circular cylinder. ASME. J. Fluids Eng. 124(2), 452–464 (2002)CrossRefGoogle Scholar
  30. 30.
    Ladd, D.; Park, D.; Hendricks, E.; Nosseir, N.: Active control of oscillatory lift forces on a circular cylinder. In: AIAA Shear Flow Conference. AIAA 93-3277, July 6–9, Orlando, FL, USA (1993)Google Scholar
  31. 31.
    Apacoglu, B.; Paksoy, A.; Aradag, S.: Effects of air blowing on turbulent flow over a circular cylinder. J. Therm. Sci. Technol. 32(2), 107–119 (2012)Google Scholar
  32. 32.
    Saha, A.K.; Ankit, S.: Suppression of vortex shedding around a square cylinder using blowing. Sadhana 40(3), 769–785 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Sen, U.; Mukhopadhyay, A.; Sen, S.: Effects of fluid injection on dynamics of flow past a circular cylinder. Eur. J. Mech. B Fluids 61, 187–199 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Huang, R.F.; Hsu, C.M.; Chen, Y.T.: Modulating flow and aerodynamic characteristics of a square cylinder in cross flow using a rear jet injection. Phys. Fluids 29, 015103 (2017).  https://doi.org/10.1063/1.4972982 CrossRefGoogle Scholar
  35. 35.
    Gao, D.L.; Chen, W.L.; Li, H.; Hu, H.: Flow around a circular cylinder with slit. Exp. Therm. Fluid Sci. 82, 287–301 (2017)CrossRefGoogle Scholar
  36. 36.
    Pantokratoras, A.: Laminar flow across an unbounded square cylinder with suction or injection. Z. Angew. Math. Phys. 68(1), 1 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Versteeg, H.K.; Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Prentice Hall, London (2007)Google Scholar
  38. 38.
    Braza, M.; Chassaing, P.; Minh, H.H.: Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. J. Fluid Mech. 165, 79–130 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Lima E Silva, A.L.F.; Silveira-Neto, A.; Damasceno, J.J.R.: Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method. J. Comput. Phys. 189, 351–370 (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Aeronautical EngineeringVel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and TechnologyChennaiIndia
  2. 2.Department of Aerospace EngineeringSRM Institute of Science and TechnologyChennaiIndia

Personalised recommendations