Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 2453–2465 | Cite as

An Improved Space Vector Pulse Width Modulation for Nine-Level Asymmetric Cascaded H-Bridge Three-Phase Inverter

  • Busireddy Hemanth KumarEmail author
  • Makarand Mohankumar Lokhande
  • Karasani Raghavendra Reddy
  • Vijay Bhanuji Borghate
Research Article - Electrical Engineering


This paper presents an improved space vector pulse width modulation (SVPWM) for nine-level cascaded H-bridge inverter with unequal DC voltage sources. This technique is based on the use of \(60^{\circ }\) spaced rs coordinate system to achieve SVPWM of multilevel three-phase inverter. In order to realize nine-level inverter, conventional SVPWM requires 1296 lookup tables, which is difficult to realize in the form of lookup tables, but the proposed technique does not require any lookup tables in the process of SVPWM realization, and it is generalized algorithm for any inverter levels. Hence, the system memory requirement is very less. The proposed modulation technique improves the nature of inverter output voltage and its total harmonic distortion value. Simulation results have been carried out using MATLAB/SIMULINK software tool. A comparative analysis is performed with classical pulse width modulation (PWM) techniques like sinusoidal PWM and third harmonic injection PWM at different modulation indices. To validate the simulation results and to confirm the practicality of the proposed control algorithm, experimental verification has been done.


Cascaded H-bridge (CHB) Space vector pulse width modulation (SVPWM) Asymmetric Harmonic distortion Nine-level inverter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rodríguez, J.; Bernet, S.; Wu, B.; Pontt, J.O.; Kouro, S.: Multilevel voltage-source-converter topologies for industrial medium-voltage drives. IEEE Trans. Ind. Electron. 54(6), 2930–2945 (2007)CrossRefGoogle Scholar
  2. 2.
    De, S.; Banerjee, D.; Siva Kumar, K.; Gopakumar, K.; Ramchand, R.; Patel, C.: Multilevel inverters for low-power application. IET Power Electron. 4(4), 384–392 (2011)CrossRefGoogle Scholar
  3. 3.
    Rodriguez, J.; Bernet, S.; Steimer, P.K.; Lizam, I.E.: A survey on neutral-point-clamped inverters. IEEE Trans. Ind. Appl. 57(7), 2219–2230 (2010)Google Scholar
  4. 4.
    Huang, J.; Corzine, K.A.: Extended operation of flying capacitor multilevel inverters. IEEE Trans. Power Electron. 21(1), 140–147 (2006)CrossRefGoogle Scholar
  5. 5.
    Malinowski, M.; Gopakumar, K.; Rodriguez, J.; Perez, M.: A survey on cascaded multilevel inverters. IEEE Trans. Ind. Appl. 57(7), 2197–2206 (2010)Google Scholar
  6. 6.
    Karasani, R.R.; Borghate, V.B.; Meshram, P.M.; Suryawanshi, H.M.; Sabyasachi, S.: A three phase hybrid cascaded modular multilevel inverter for renewable energy environment. IEEE Trans. Power Electron. 32(2), 1070–1086 (2016)CrossRefGoogle Scholar
  7. 7.
    Karasani, R.R.; Borghate, V.B.; Meshram, P.M.; Suryawanshi, H.M.: A modified switched-diode topology for cascaded multilevel inverters. J. Power Electron. 16(5), 1706–1715 (2016)CrossRefGoogle Scholar
  8. 8.
    Holmes, D.G.; Lipo, T.A.: Pulse Width Modulation for Power Converters: Principles and Practice. John Wiley & Sons, New York, USA (2003)CrossRefGoogle Scholar
  9. 9.
    Holtz, J.: Pulse width modulation-a survey. IEEE Trans. Ind. Electron. 39(5), 410–420 (1992)CrossRefGoogle Scholar
  10. 10.
    Palanivel, P.; Dash, S.S.: Analysis of THD and output voltage performance for cascaded multilevel inverter using carrier pulse width modulation techniques. IET Power Electron. 4(8), 951–958 (2011)CrossRefGoogle Scholar
  11. 11.
    Seo, J.H.; Choi, C.H.; Hyun, D.S.: A new simplified space vector PWM method for three-level inverters. IEEE Trans. Power Electron. 16, 545–550 (2001)Google Scholar
  12. 12.
    Matsa, A.; Ahmed, I.; Chaudhari, M.A.: Optimized space vector pulse-width modulation technique for a five-level cascaded H-bridge inverter. J. Power Electron. 14(5), 937–945 (2014)CrossRefGoogle Scholar
  13. 13.
    Ahmed, I.; Borghate, V.B.: Simplified space vector modulation technique for seven-level cascaded H-bridge inverter. IET Power Electron. 7(3), 604–613 (2014)CrossRefGoogle Scholar
  14. 14.
    Ahmed, I.; Borghate, V.B.; Matsa, A.; Meshram, P.M.; Suryawanshi, H.M.; Chaudhari, M.A.: Simplified space vector modulation techniques for multilevel inverters. IEEE Trans. Power Electron. 31(12), 8483–8499 (2016)CrossRefGoogle Scholar
  15. 15.
    Rabinovici, R.; Baimel, D.; Tomasik, J.; Zuckerberger, A.: Series space vector modulation for multilevel cascaded H-bridge inverters. IET Power Electron. 3(6), 843–857 (2010)CrossRefGoogle Scholar
  16. 16.
    Hemanth Kumar, B.; Lokhande, M.M.; Karasani, R.R.; Borghate, V.B.: A modified space vector PWM approach for nine-level cascaded H-bridge inverter. Arab. J. Sci. Eng. (2018).
  17. 17.
    Hemanth Kumar, B.; Lokhande, M.M.: An enhanced space vector PWM for nine-level inverter employing single voltage source. IEEE Transportation Electrification Conference-India. 1–6 (2017)
  18. 18.
    Prasad, J.S.S.; Narayanan, G.: Minimum switching loss pulse width modulation for reduced power conversion loss in reactive power compensators. IET Power Electron. 7(3), 545–551 (2013)CrossRefGoogle Scholar
  19. 19.
    Pavan Kumar Hari, V.S.S.; Narayanan, G.: Space-vector-based hybrid PWM technique to reduce line current distortion in induction motor drives. IET Power Electron. 5(8), 1463–1471 (2012)CrossRefGoogle Scholar
  20. 20.
    Jacob, B.; Baiju, M.R.: Simple multilevel inverter-based induction motor drive scheme using sigma-delta converter with space-vector quantiser. IET Power Electron. 5(8), 1483–1490 (2012)CrossRefGoogle Scholar
  21. 21.
    Massoud, A.M.; Finney, S.J.; Cruden, A.; Williams, B.W.: Mapped phase-shifted space vector modulation for multi-level voltage-source inverters. IET Power Electron. 1(4), 622–636 (2007)CrossRefGoogle Scholar
  22. 22.
    Massoud, A.M.; Finney, S.J.; Williams, B.W.: Mapped hybrid spaced vector modulation for multilevel cascaded-type voltage source inverters. IET Power Electron. 1(3), 318–335 (2008)CrossRefGoogle Scholar
  23. 23.
    SEMIKRON IGBT Modules SEMITRANS-2 datasheet, SEMIKRON Co. Ltd.Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentVisvesvaraya National Institute of TechnologyNagpurIndia
  2. 2.Electrical Engineering DepartmentSreenidhi Institute of Science and TechnologyHyderabadIndia

Personalised recommendations