Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 2445–2451 | Cite as

Analysis of Wireless Power Transfer System with New Resonant Circuit for High Efficiency Using Perforated Capacitors

  • Rachid KeridEmail author
  • Hicham Bourouina
Research Article - Electrical Engineering


In this paper a new resonant circuit model with perforated capacitor is developed to describe the wireless power transfer system (WPTs)-based inductive method. Since the compensation of leakages is necessary to improve efficiency, the effects of certain geometrical parameters are investigated for inductive power transfer (IPT) by considering distinct perforated capacitive for various dielectrics. Analysis of IPT system using this circuit model indicated that the efficiency is affected by the gap ratio as well as the hole size ratio and the number of holes along the section of perforated capacitor. The results show that the IPT system with the new resonant circuit can achieve a high efficiency over a range of operating conditions. At resonance condition, this approach provides a clear advantage due to the high efficiency related to the geometrical parameters of perforated capacitors. Both resonance frequencies and efficiency values are compared with respect to conventional method that use classical resonant circuit where the proper parameters are determined to maximize efficiency.


Inductive power transfer (IPT) Resonant circuit Geometrical parameters Maximum efficiency Perforated capacitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Algerian PNR domiciled in FUNDAPL Laboratory, University of Blida (Algeria).


  1. 1.
    Di Capua, G.; Femia, N.; Petrone, G.; Lisi, G.; Du, D.; Subramonian, R.: Power and efficiency analysis of high-frequency wireless power transfer systems. Int. J. Electr. Power Energy Syst. 84, 124–134 (2017)CrossRefGoogle Scholar
  2. 2.
    Ali, A.; Abo-Zahhad, M.; Farrag, M.: Modeling of wireless sensor networks with minimum energy consumption. Arab. J. Sci. Eng. 42(7), 2631–2639 (2017)CrossRefGoogle Scholar
  3. 3.
    Tavli, B.: Energy-efficient relaying in wireless networks. AEU-Int. J. Electron. Commun. 63(8), 695–698 (2009)CrossRefGoogle Scholar
  4. 4.
    Li, W.; Zhao, H.; Li, S.; Deng, J.; Kan, T.; Mi, C.C.: Integrated LCC compensation topology for wireless charger in electric and plug-in electric vehicles. IEEE Trans. Ind. Electron. 62(7), 4215–4225 (2015)CrossRefGoogle Scholar
  5. 5.
    Kurs, A.; Karalis, A.; Moffatt, R.; Joannopoulos, J.D.; Fisher, P.; Soljačić, M.: Wireless power transfer via strongly coupled magnetic resonances. Science 317(5834), 83–86 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Costanzo, A.; Dionigi, M.; Mastri, F.; Mongiardo, M.; Monti, G.; Russer, J.A.; Tarricone, L.: Conditions for a load-independent operating regime in resonant inductive WPT. IEEE Trans. Microw. Theory Tech. 65(4), 1066–1076 (2017)CrossRefGoogle Scholar
  7. 7.
    Zhao, J.F.; Huang, X.L.; Wang, W.: Efficiency analysis of magnetic resonance wireless power transfer with three-dimensional transmitters. J. Appl. Phys. 117(17), 17B516 (2015)CrossRefGoogle Scholar
  8. 8.
    Liu, C.; Hu, A.P.; Wang, B.; Nair, N.K.C.: A capacitively coupled contactless matrix charging platform with soft switched transformer control. IEEE Trans. Ind. Electron. 60(1), 249–260 (2013)CrossRefGoogle Scholar
  9. 9.
    Kaya, A.; Kaya, I.; Karaca, H.E.: U-shape slot antenna design with high-strength Ni54Ti46 alloy. Arab. J. Sci. Eng. 41(9), 3297–3307 (2016)CrossRefGoogle Scholar
  10. 10.
    Hasanzadeh, S.; Vaez-Zadeh, S.: Efficiency analysis of contactless electrical power transmission systems. Energy Convers. Manag. 65, 487–496 (2013)CrossRefGoogle Scholar
  11. 11.
    Wang, C.S.; Covic, G.A.; Stielau, O.H.: Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems. IEEE Trans. Ind. Electron. 51(1), 148–157 (2004)CrossRefGoogle Scholar
  12. 12.
    Soodmand, S.; Brown, T.W.: Inductively coupled small self resonant coil (SSRC) reader antennas for HF RFID applications. AEU-Int. J. Electron. Commun. (2017)Google Scholar
  13. 13.
    Oguri, K.: Power supply coupler for battery charger. U.S. Patent 6 356 049, 12 Mar 2002Google Scholar
  14. 14.
    Liu, X.; Hui, S.Y.R.: Simulation study and experimental verification of a contactless battery charging platform with localized charging features. IEEE Trans. Power Electron. 22(6), 2202–2210 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hui, S.Y.R.: Planar inductive battery charging system. U.S. Patent 7 576 514, 18 Aug 2009Google Scholar
  16. 16.
    Katrašnik, T.: Energy conversion phenomena in plug-in hybrid-electric vehicles. Energy Convers. Manag. 52(7), 2637–2650 (2011)CrossRefGoogle Scholar
  17. 17.
    Zhang, Z.; Chau, K.T.; Liu, C.; Qiu, C.; Lin, F.: An efficient wireless power transfer system with security considerations for electric vehicle applications. J. Appl. Phys. 115(17), 17A328 (2014)CrossRefGoogle Scholar
  18. 18.
    RamRakhyani, A.K.; Mirabbasi, S.; Chiao, M.: Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 5(1), 48–63 (2011)CrossRefGoogle Scholar
  19. 19.
    Kender, G.A.; Liu, W.; Wang, G.; Sivaprakasam, M.; Bashirullah, R.; Humayun, M.S.; Weiland, J.D.: An optimal design methodology for inductive power link with class-E amplifier. IEEE Trans. Circuits Syst. I, Reg. Papers 52(5), 857–865 (2005)CrossRefGoogle Scholar
  20. 20.
    Kim, S.; Ho, J.S.; Chen, L.Y.; Poon, A.: Wireless power transfer to a cardiac implant. Appl. Phys. Lett. 101(7), 073701 (2012)CrossRefGoogle Scholar
  21. 21.
    Ahn, D.; Hong, S.: Effect of coupling between multiple transmitters or multiple receivers on wireless power transfer. IEEE Trans. Ind. Electron. 60(7), 2602–2613 (2013)CrossRefGoogle Scholar
  22. 22.
    Majumder, A.; Roy, S.: Implementation of forward pointer-based routing scheme for wireless mesh network. Arab. J. Sci. Eng. 41(3), 1109–1127 (2016)CrossRefGoogle Scholar
  23. 23.
    Stielau, O.H.; Covic, G.A.: Design of loosely coupled inductive power transfer systems. In: Power System Technology, 2000. Proceedings. PowerCon 2000. International Conference on, vol. 1, pp. 85–90. IEEE (2000)Google Scholar
  24. 24.
    Min, X.; Wei-Ren, S.; Chang-Jiang, J.J.; Ying, Z.: Energy efficient clustering algorithm for maximizing lifetime of wireless sensor networks. AEU-Int. J. Electron. Commun. 64(4), 289–298 (2010)CrossRefGoogle Scholar
  25. 25.
    Bourouina, H.; Yahiaoui, R.; Sahar, A.; Benamar, M.E.: Analytical modeling for the determination of nonlocal resonance frequencies of perforated nanobeams subjected to temperature-induced loads. Physica E Low Dimens. Syst. Nanostruct. 75, 163–168 (2016)CrossRefGoogle Scholar
  26. 26.
    Chan, J.; Eichenfield, M.; Camacho, R.; Painter, O.: Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity. Opt. Express 17(5), 3802–3817 (2009)CrossRefGoogle Scholar
  27. 27.
    Bourouina, H.; Yahiaoui, R.; Kerid, R.; Benamar, M.E.A.; Brioua, F.: Adsorption-induced nonlocal frequency shift in adatoms-nanobeam system. Physica B: Condens. Matter (2017)Google Scholar
  28. 28.
    Hasanzadeh, S.; Vaez-Zadeh, S.: Performance analysis of contactless electrical power transfer for Maglev. J. Magn. 17(2), 115–123 (2012)CrossRefGoogle Scholar
  29. 29.
    Huang, Y.; Shinohara, N.; Mitani, T.: Impedance matching in wireless power transfer. IEEE Trans. Microw. Theory Tech. 65(2), 582–590 (2017)CrossRefGoogle Scholar
  30. 30.
    Huang, S.D.; Li, Z.Q.; Li, Y.: Transfer efficiency analysis of magnetic resonance wireless power transfer with intermediate resonant coil. J. Appl. Phys. 115(17), 17A336 (2014)CrossRefGoogle Scholar
  31. 31.
    Gürleyük, S.S.; Taşkin, H.; Saraç, Z.: Measurement of the parameters and the resonance frequency in semiconductor controlled Tesla transformer. Int. J. Electr. Power Energy Syst. 43(1), 6–10 (2012)CrossRefGoogle Scholar
  32. 32.
    Cheng, Y.Z.; Jin, J.; Li, W.L.; Chen, J.F.; Wang, B.; Gong, R.Z.: Indefinite-permeability metamaterial lens with finite size for miniaturized wireless power transfer system. AEU-Int. J. Electron. Commun. 70(9), 1282–1287 (2016)CrossRefGoogle Scholar
  33. 33.
    Song, M.; Iorsh, I.; Kapitanova, P.; Nenasheva, E.; Belov, P.: Wireless power transfer based on magnetic quadrupole coupling in dielectric resonators. Appl. Phys. Lett. 108(2), 023902 (2016)CrossRefGoogle Scholar
  34. 34.
    Lin, G.; Hu, T.; Liu, C.; Zhang, L.; Peng, J.; Yang, L.: Dielectric characterizations and microwave heating behavior of zinc compound in microwave field. Arab. J. Sci. Eng. 1–10 (2017)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.LabSET, Faculty of the Engineering SciencesUniversité Saad Dahlab de Blida 1BlidaAlgeria
  2. 2.Laboratoire de physiqueEcole Normale Supérieure Bou-SaadaM’SilaAlgeria

Personalised recommendations