Advertisement

Combined Adsorption/Photocatalysis Process for the Decolorization of Acid Orange 61

  • Elhadj Mekatel
  • Samira Amorkrane
  • Mohamed Trari
  • Djamel Nibou
  • Nadjib Dahdouh
  • Samir Ladjali
Research Article - Chemical Engineering

Abstract

The objective of this study was to evaluate the performance of combined processes: adsorption/photodegradation of the acid orange 61. The adsorption was achieved on activated Algerian clay in batch mode. The influence of the adsorbent dose (1–6 g \({\hbox {L}}^{-1})\), initial acid orange 61 concentration (25–125 mg \({\hbox {L}}^{-1})\), pH (2–7) and temperature (293–323 K) on the adsorption of acid orange 61 has been studied. The maximum uptake was observed at pH \(\sim \) 2 for an initial concentration of 25 mg \({\hbox {L}}^{-1}\) at 293 K. The adsorption was fast with an elimination percentage of 84% within 20 min of contact time. The process is spontaneous and endothermic, and the Langmuir model is successfully applied to fit the experimental data. The coupling processes (adsorption/photocatalysis) were tested with a high efficiency. For the remaining concentrations, the removal yields reach 100% under solar light using \({\hbox {TiO}}_{2}\) as photocatalyst.

Keywords

Algerian clay Acid orange 61 Adsorption \({\hbox {TiO}}_{2}\) Photodegradation Solar light 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the Faculty of Mechanic and Engineering Process (USTHB, Algiers).

References

  1. 1.
    Azha, S.F.; Shahadat, M.; Ismail, S.: Acrylic polymer emulsion supported bentonite clay coating for the analysis of industrial dye. Dyes Pigm. 145, 550–560 (2017).  https://doi.org/10.1016/j.dyepig.2017.05.009 CrossRefGoogle Scholar
  2. 2.
    Kooli, F.; Liu, Y.; Al-Faze, R.; Al, Suhaimi A.: Effect of acid activation of Saudi local clay mineral on removal properties of basic blue 41 from an aqueous solution. Appl. Clay Sci. 116, 23–30 (2015)CrossRefGoogle Scholar
  3. 3.
    Lin, Y.; Chen, Z.; Megharaj, M.; Naidu, R.: Decoloration of acid violet red B by bentonite-supported nanoscale zero-valent iron: reactivity, characterization, kinetics and reaction pathway. Appl. Clay Sci. 93, 56–61 (2014)CrossRefGoogle Scholar
  4. 4.
    Fernandes de Queiroga, L.N.; Soares, P.K.; Fonseca, M.G.; Eusébio de Oliveira, F.J.V.: Experimental design investigation for vermiculite modification: intercalation reaction and application for dye removal. Appl. Clay Sci. 126, 113–121 (2016)CrossRefGoogle Scholar
  5. 5.
    Komadel, P.: Acid activated clays: materials in continuous demand. Appl. Clay Sci. 131, 84–99 (2016)CrossRefGoogle Scholar
  6. 6.
    Salem, S.; Salem, A.; Babaei, A.A.: Preparation and characterization of nano porous bentonite for regeneration of semi-treated waste engine oil: applied aspects for enhanced recovery. Chem. Eng. J. 260, 368–376 (2015)CrossRefGoogle Scholar
  7. 7.
    Mekatel, E.H.; Amokrane, S.; Aid, A.; Nibou, D.; Trari, M.: Adsorption of methyl orange on nanoparticles of a synthetic zeolite NaA/CuO. C. R. Chim. 18(3), 336–344 (2015)CrossRefGoogle Scholar
  8. 8.
    Pandey, S.: A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. J. Mol. Liq. 241, 1091–1113 (2017)CrossRefGoogle Scholar
  9. 9.
    Houhoune, F.; Nibou, D.; Chegrouche, S.; Menacer, S.: Behaviour of modified hexadecyltrimethylammonium bromide bentonite toward uranium species. J. Environ. Chem. Eng. 4(3), 3459–3467 (2016)CrossRefGoogle Scholar
  10. 10.
    Ngulube, T.; Gumbo, J.R.; Masindi, V.; Maity, A.: An update on synthetic dyes adsorption onto clay based minerals: a state-of-art review. J. Environ. Manage. 191, 35–57 (2017)CrossRefGoogle Scholar
  11. 11.
    Li, W.; Zuo, P.; Xu, D.; Xu, Y.; Wang, K.; Bai, Y.; Ma, H.: Tunable adsorption properties of bentonite/carboxymethyl cellulose-g-poly (2-(dimethylamino) ethyl methacrylate) composites toward anionic dyes. Chem. Eng. Res. Des. 124, 260–270 (2017)CrossRefGoogle Scholar
  12. 12.
    España, V.A.A.; Sarkar, B.; Biswas, B.; Rusmin, R.; Naidu, R.: Environmental applications of thermally modified and acid activated clay minerals: current status of the art. Environ. Technol. Innov. (2016).  https://doi.org/10.1016/j.eti.2016.11.005 CrossRefGoogle Scholar
  13. 13.
    Özcan, A.; Ömeroğlu, Ç.; Erdoğan, Y.; Özcan, A.S.: Modification of bentonite with a cationic surfactant: an adsorption study of textile dye Reactive Blue 19. J. Hazard Mater. 140(1), 173–179 (2007)CrossRefGoogle Scholar
  14. 14.
    Mu, B.; Tang, J.; Zhang, L.; Wang, A.: Preparation, characterization and application on dye adsorption of a well-defined two-dimensional superparamagnetic clay/polyaniline/\(\text{ Fe }_{{3}}\text{ O }_{{4}}\) nanocomposite. Appl. Clay Sci. 132, 7–16 (2016)CrossRefGoogle Scholar
  15. 15.
    El-Zahhar, A.A.; Awwad, N.S.; El-Katori, E.E.: Removal of bromophenol blue dye from industrial waste water by synthesizing polymer-clay composite. J. Mol. Liq. 199, 454–461 (2014)CrossRefGoogle Scholar
  16. 16.
    Chen, R.; Peng, F.; Su, S.: Synthesis and characterization of novel swelling tunable oligomeric poly (styrene-\(co\)-acrylamide) modified clays. J. Appl. Polym. Sci. 108(4), 2712–2717 (2008)CrossRefGoogle Scholar
  17. 17.
    Belbachir, I.; Makhoukhi, B.: Adsorption of Bezathren dyes onto sodic bentonite from aqueous solutions. J. Taiwan Inst. Chem. E 75, 105–111 (2017)CrossRefGoogle Scholar
  18. 18.
    Zivica, V.; Palou, M.T.: Physico-chemical characterization of thermally treated bentonite. Compos. Part B Eng. 68, 436–445 (2015)CrossRefGoogle Scholar
  19. 19.
    Makhoukhi, B.; Didi, M.A.; Moulessehoul, H.; Azzouz, A.: Telon dye removal from Cu(II)-containing aqueous media using p-diphosphonium organo montmorillonite. Mediterr. J. Chem. 1(2), 44–55 (2011)CrossRefGoogle Scholar
  20. 20.
    Mekatel, H.; Amokrane, S.; Bellal, B.; Trari, M.; Nibou, D.: Photocatalytic reduction of Cr(VI) on nanosized \(\text{ Fe }_{{2}}\text{ O }_{{3}}\) supported on natural Algerian clay: characteristics, kinetic and thermodynamic study. Chem. Eng. J. 200, 611–618 (2012)CrossRefGoogle Scholar
  21. 21.
    Meshram, S.; Limaye, R.; Ghodke, S.; Nigam, S.; Sonawane, S.; Chikate, R.: Continuous flow photocatalytic reactor using ZnO–bentonite nanocomposite for degradation of phenol. Chem. Eng. J. 172(2), 1008–1015 (2011)CrossRefGoogle Scholar
  22. 22.
    Chong, M.N.; Jin, B.; Chow, C.W.; Saint, C.: Recent developments in photocatalytic water treatment technology: a review. Water Res. 44(10), 2997–3027 (2010)CrossRefGoogle Scholar
  23. 23.
    Çalışkan, Y.; Yatmaz, H.C.; Bektaş, N.: Photocatalytic oxidation of high concentrated dye solutions enhanced by hydrodynamic cavitation in a pilot reactor. Process Saf. Environ. 111, 428–438 (2017)CrossRefGoogle Scholar
  24. 24.
    Kaouah, F.; Boumaza, S.; Berrama, T.; Trari, M.; Bendjama, Z.: Preparation and characterization of activated carbon from wild olive cores (oleaster) by \(\text{ H }_{\text{3 }}~\text{ PO }_{\text{4 }}\) for the removal of Basic Red 46. J. Clean. Prod. 54, 296–306 (2013)CrossRefGoogle Scholar
  25. 25.
    Bergaya, F.; Theng, B.K.G.; Lagaly, G.: General introduction: clays, clay minerals, and clay science. Dev. Clay Sci. 1, 1–18 (2006)CrossRefGoogle Scholar
  26. 26.
    Rangabhashiyam, S.; Anu, N.; Nandagopal, M.G.; Selvaraju, N.: Relevance of isotherm models in biosorption of pollutants by agricultural byproducts. J. Environ. Chem. Eng. 2(1), 398–414 (2014)CrossRefGoogle Scholar
  27. 27.
    Papegowda, P.K.; Syed, A.A.: Isotherm, kinetic and thermodynamic studies on the removal of methylene blue dye from aqueous solution using Saw Palmetto spent. Int. J. Environ. Res. 11(1), 91–98 (2017)CrossRefGoogle Scholar
  28. 28.
    Ratnamala, G.M.; Deshannavar, U.B.; Munyal, S.; Tashildar, K.; Patil, S.; Shinde, A.: Adsorption of reactive blue dye from aqueous solutions using sawdust as adsorbent: optimization, kinetic, and equilibrium studies. Arab. J. Sci. Eng. 41(2), 333–344 (2016)CrossRefGoogle Scholar
  29. 29.
    Elovich, S.Y.; Larinov, O.G.: Theory of adsorption from solutions of non electrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form (II) verification of the equation of adsorption isotherm from solutions. Izv. Akad. Nauk. SSSR Otd. Khim. Nauk 2(2), 209–216 (1962)Google Scholar
  30. 30.
    Aid, A.; Amokrane, S.; Nibou, D.; Mekatel, E.; Trari, M.; Hulea, V.: Modeling biosorption of Cr(VI) onto Ulva compressa L. from aqueous solutions. Water Sci. Technol. 77(1), 60–69 (2017)CrossRefGoogle Scholar
  31. 31.
    Subramani, S.E.; Thinakaran, N.: Isotherm, kinetic and thermodynamic studies on the adsorption behaviour of textile dyes onto chitosan. Process Saf. Environ. 106, 1–10 (2017)CrossRefGoogle Scholar
  32. 32.
    Nibou, D.; Mekatel, H.; Amokrane, S.; Barkat, M.; Trari, M.: Adsorption of Zn\(^{\text{2+ }}\) ions onto NaA and NaX zeolites: kinetic, equilibrium and thermodynamic studies. J. Hazard Mater. 173, 637–646 (2010)CrossRefGoogle Scholar
  33. 33.
    Mahmoud, M.R.; Lazaridis, N.K.: Simultaneous removal of nickel(II) and chromium(VI) from aqueous solutions and simulated wastewaters by foam separation. Sep. Sci. Technol. 50(9), 1421–1432 (2015)CrossRefGoogle Scholar
  34. 34.
    Magdy, Y.H.; Altaher, H.: Kinetic analysis of the adsorption of dyes from high strength wastewater on cement kiln dust. J. Environ. Chem. Eng. 6, 834–841 (2018)CrossRefGoogle Scholar
  35. 35.
    Barkat, M.; Nibou, D.; Chegrouche, S.; Mellah, A.: Kinetics and thermodynamics studies of chromium(VI) ions adsorption onto activated carbon from aqueous solutions. Chem. Eng. Process. 48(1), 38–47 (2009)CrossRefGoogle Scholar
  36. 36.
    Erol, A.; Aysegül, Ü.M.: Anionic dye removal from aqueous solutions using modified zeolite: adsorption kinetics and isotherm studies. Chem. Eng. J. 200, 59–67 (2012)Google Scholar
  37. 37.
    Akpan, U.G.; Hameed, B.H.: Parameters affecting the photocatalytic degradation of dyes using \(\text{ TiO }_{{2}}\)-based photocatalysts: a review. J. Hazar Mater. 170(2–3), 520–529 (2009)CrossRefGoogle Scholar
  38. 38.
    Ayoub, H.; Kassir, M.; Raad, M.; Bazzi, H.; Hijazi, A.: Effect of dye structure on the photodegradation kinetic using \(\text{ TiO }_{{2}}\) nanoparticles. J. Mater. Sci. Chem. Eng. 5(6), 31–45 (2017)Google Scholar
  39. 39.
    Sugiyana, D.; Handajani, M.; Kardena, E.; Notodarmojo, S.: Photocatalytic degradation of textile containing reactive black 5 azo dye by using immobilized \(\text{ TiO }_{2}\)nanofiber-nanoparticle composite catalyst on glass plates. J. JSCE 2(1), 69–76 (2014)CrossRefGoogle Scholar
  40. 40.
    Ajmal, A.; Majeed, I.; Malik, R.N.; Idriss, H.; Nadeem, M.A.: Principales and mechanisms of photocatalytic dye degradation on \(\text{ TiO }_{{2}}\) based photocatalysts: a comparative overview. RSC Adv. 4(70), 37003–37026 (2014)CrossRefGoogle Scholar
  41. 41.
    Vohra, M.S.; Al-Suwaiyan, M.S.; Essa, M.H.; Chowdhury, M.M.I.; Rahman, M.M.; Labaran, B.A.: Application of solar photocatalysis and solar photo-fenton processes for the removal of some critical charged pollutants: mineralization trends and formation of reaction intermediates. Arab. J. Sci. Eng. 41(10), 3877–3887 (2016)CrossRefGoogle Scholar
  42. 42.
    Brahimi, R.; Bessekhouad, Y.; Bouguelia, A.; Trari, M.: Improvement of eosin visible light degradation using PbS-sensititized \(\text{ TiO }_{{2}}\). J. Photochem. Photobiol. A 194(2), 173–180 (2008)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Elhadj Mekatel
    • 1
  • Samira Amorkrane
    • 1
  • Mohamed Trari
    • 2
  • Djamel Nibou
    • 1
  • Nadjib Dahdouh
    • 1
  • Samir Ladjali
    • 1
  1. 1.Laboratoire de Technologie des Matériaux, Faculté de Génie Mécanique et Génie des ProcédésUSTHBEl-Alia, AlgerAlgérie
  2. 2.Laboratory of Storage and Valorization of Renewable Energies, Faculty of ChemistryUSTHBEl-Allia, AlgerAlgeria

Personalised recommendations