Advertisement

Quantum Chemical Calculations, Spectroscopic Studies and Biological Activity of Organic–Inorganic Hybrid Compound (2,2-Dimethylpropane-1,3-diammonium) Tetrachlorozincate(II)

  • Mahboob Alam
  • Youngwon Kim
  • Soonheum Park
Research Article - Physics
  • 25 Downloads

Abstract

The paper describes the combinatorial study of experimental and theoretical on organic–inorganic hybrid compound \([(\hbox {NH}_{3}{-}\hbox {CH}_{2}{-}\hbox {C}(\hbox {CH}_{3})_{2}{-}\hbox {CH}_{2}{-}\hbox {NH}_{3})]^{2+}[\hbox {ZnCl}_{4}]^{2-}\). The molecular structure of the studied compound was optimized theoretically, and the quantum chemical parameters were calculated. The vibratory bands emerging in the FT-IR were accurately assigned by animated mode. Molecular properties like frontier orbitals analysis, chemical reactivity descriptors, MEP mapping, dipole moments and natural charges were calculated under the DFT using the B3LYP/6-311++G(d,p)/LanL2DZ theory level. The theoretical data are found to be in good correlation with the experimental results obtained from various physicochemical techniques. The agar diffusion methods were used to study the antimicrobial assay of the compound against pathogenic strains, namely Escherichia coli and Salmonella typhi bacteria as well as selected fungi species: Candida albicans, Aspergillus niger and Aspergillus flavus. It was observed that Zn-ionic salt compound was selective and acts as a competitive inhibitor on E. coli compared to other strains. Molecular docking simulation was carried out to predict the nature of hybrid compound in the X-ray crystal structure of receptor of E. coli (PDB ID: 1ERQ) at active site to find out the suitable binding modality. The results of the simulation acknowledged the inhibitor nature of a new an organic inorganic hybrid compound. Cytotoxicity was also assessed in terms of \(\hbox {LD}_{50}\) (lethal dose, 50%) using a brine shrimp lethality bioassay. Obtained brine shrimp lethality test results suggested that bioactive quality exists in the Zn compound which could be considered for its biological effects.

Keywords

Tetraalkylammonium salt Zinc chloride Quantum chemical Spectral studies Biological assay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Binnemans, K.: Ionic liquid crystals. Chem. Rev. 105, 4148–4204 (2005)CrossRefGoogle Scholar
  2. 2.
    Robin, D.R.; Gregory, A.V.: Ionic liquids. Acc. Chem. Res. 40, 1077–1078 (2007)CrossRefGoogle Scholar
  3. 3.
    Abedin, S.Z.E.; Endres, F.: Ionic liquids: the link to high-temperature molten salts? Acc. Chem. Res. 40, 1106–1113 (2007)CrossRefGoogle Scholar
  4. 4.
    Blesic, M.; Swadzba-Kwasny, M.; Holbrey, J.; Lopes, J.N.C.; Seddon, K.; Rebelo, L.P.N.: New catanionic surfactants based on 1-alkyl-3-methylimidazolium alkylsulfonates, [C\(_{{n}}\)H\(_{2n+1}\)mim][C\(_{m}\)H\(_{2m+1}\)SO\(_3\)]: mesomorphism and aggregation. Phys. Chem. Chem. Phys. 11, 4260–4268 (2009)CrossRefGoogle Scholar
  5. 5.
    Zengbin, W.; Xilian, W.; Wang, X.; Wang, Z.; Liu, J.: Ionic liquid crystals of quaternary ammonium salts with a 2-hydroxypropoxy insertion group. J. Mater. Chem. 21, 6875–6882 (2011)CrossRefGoogle Scholar
  6. 6.
    Kallel, A.; Fail, J.: 1,3-Propanediammonium tetraehlorozincate (ll). Acta Crystallogr. B 36, 2788–2790 (1980)CrossRefGoogle Scholar
  7. 7.
    Brammer, L.; Swearingen, J.K.; Bruton, E.A.; Sherwood, P.: Hydrogen bonding and perhalometallate ions: a supramolecular synthetic strategy for new inorganic materials. Proc. Natl. Acad. Sci. USA 99, 4956–4961 (2002)CrossRefGoogle Scholar
  8. 8.
    Needham, G.F.; Willet, R.D.; Frentzen, H.F.: Phase transitions in crystalline models of bilayers. 1. Differential scanning calorimetric and X-ray studies of \(({\text{ C }}_{12}{\text{ H }}_{25}{\text{ NH }}_{3})_{2}{\text{ MCl }}_{4}\) and \((\text{ NH }_{3}\text{ C }_{14}\text{ H }_{29}\text{ NH }_{3})_{2}\text{ MCl }_{4}\) salts \((\text{ M } = \text{ Mn }^{2+}\), \(\text{ Cd }^{2+}\), \(\text{ Cu }^{2+})\). J. Phys. Chem. 88, 674–680 (1984)CrossRefGoogle Scholar
  9. 9.
    Coronado, E.; Day, P.: Magnetic molecular conductors. Chem. Rev. 104, 5419–5448 (2004)CrossRefGoogle Scholar
  10. 10.
    Qian, J.; Xie, M.J.; Feng, L.; Tian, J.L.; Shang, J.; Zhang, Y.; Yan, S.P.: Synthesis, structure, magnetic, and spectroscopic properties of a chloro-bridged trinuclear copper(II) complex: \([\text{ Cu(bpea)Cl] }_{2}\text{ CuCl }_{4}\). J. Coord. Chem. 63, 2239–2246 (2010)CrossRefGoogle Scholar
  11. 11.
    Li, Y.Y.; Lin, C.K.; Zheng, G.L.; Cheng, Z.Y.; You, H.; Wang, W.D.; Lin, J.: Novel \(<110>\)-oriented organic–inorganic perovskite compound stabilized by N-(3-aminopropyl)imidazole with improved optical properties. Chem. Mater. 18, 3463–3469 (2006)CrossRefGoogle Scholar
  12. 12.
    Pan, J.; Wei, Q.; Ju, J.; Liu, B.; Jin, S.; Lin, Z.; Wang, D.: Syntheses and structural characterization of six ionic salts based on bis(benzimidazole)/bis(imidazole) and perchlorometallates of Zn and Cu. J. Coord. Chem. 67, 3578–3597 (2014)CrossRefGoogle Scholar
  13. 13.
    Al-Resayes, S.I.; Azam, M.; Alam, M.; Kumar, R.S.; Adil, S.F.: Synthesis, crystal structure and Hirschfeld surface analyses of an alkyl amine based salt, \([\text{ C }_{5}\text{ H }_{16}\text{ N }_2][\text{ ZnCl }_{4}]\) and its enzyme inhibition activity. J. Saudi Chem. Soc. 21, 481–486 (2017)CrossRefGoogle Scholar
  14. 14.
    Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N.J.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J.: Gaussian 09, Revision D.01, 1st edn. Gaussian Inc., Wallingford (2009)Google Scholar
  15. 15.
    Dennington, R.; Keith, T.; Millam, J.: GaussView, Ver. 5. Semichem Inc, Shawnee Mission (2009)Google Scholar
  16. 16.
    Zhurko, G.A.; Zhurko, D.A.: ChemCraft: tool for treatment of chemical data, Late version build 08 (2005)Google Scholar
  17. 17.
    Jamróz, M.H.: Vibrational Energy Distribution Analysis VEDA 4.0 Program, Warsaw (2004)Google Scholar
  18. 18.
    Heatley, N.G.: A method for the assay of penicillin. Biochem. J. 38, 61–65 (1944)CrossRefGoogle Scholar
  19. 19.
    Heatley, N.G.: CLSI, Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, 7th edn. CLSI document M02-A11. Clinical and Laboratory Standards Institute, Wayne, PA, USA (2012)Google Scholar
  20. 20.
    Heatley, N.G.: CLSI, Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts, Approved Guideline. CLSI document M44-A. CLSI, Wayne, PA, USA (2004)Google Scholar
  21. 21.
    Heatley, N.G.: CLSI, Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, 7th ed., CLSI document M02-A11. Clinical and Laboratory Standards Institute, Wayne, PA, USA (2012)Google Scholar
  22. 22.
    Meyer, B.B.; Ferringi, N.R.; Futman, F.J.; Jacobsan, L.B.; Nicchols, D.E.; Mclaughlin, J.L.: Brine Shrimp a convenient general bioassay for active plants constituents. Planta Med. 45, 31–34 (1982)CrossRefGoogle Scholar
  23. 23.
    Persoone, G.: Proceedings of the International Symposium on Brine Shrimp, Artemia salina, pp. 1–3. University press, Wittern Belgium (1988)Google Scholar
  24. 24.
    Gurkan, E.; Tuzun, O.T.; Hirlak, F.: Cytotoxicity assay of some papaver alkaloids using Artemia salina (Brine shrimp). Fitoterapia LXVI, 544–545 (1995)Google Scholar
  25. 25.
    Yang, J.M.; Chen, C.C.: GEMDOCK: a generic evolutionary method for molecular docking. Proteins Struct. Funct. Bioinform. 55, 288–304 (2004)CrossRefGoogle Scholar
  26. 26.
    Accelrys Software Inc Discovery Studio Modeling Environment Releaser 4.0 Accelrys Software Inc, SanDiego (2013)Google Scholar
  27. 27.
    Borba, A.; Albrecht, M.; Gomez-Zavaglia, A.; Suhm, A.M.; Fausto, R.: Low temperature infrared spectroscopy study of pyrazinamide: from the isolated monomer to the stable low temperature crystalline phase. J. Phys. Chem. A 114, 151–161 (2010)CrossRefGoogle Scholar
  28. 28.
    Alam, M.; Park, S.: Molecular structure, spectral studies, NBO, HOMO–LUMO profile, MEP and Mulliken analysis of 3\(\upbeta \),6\(\upbeta \)-dichloro-5\(\upalpha \)-hydroxy-5\(\upalpha \)-cholestane. J. Mol. Struct. 1159, 33–45 (2018)CrossRefGoogle Scholar
  29. 29.
    Phyllis, R.S.; Brogden, R.N.; Pinder, K.M.; Speight, T.M.; Avery, G.S.: Clotrimazole: a review of its antifungal activity and therapeutic efficacy. Drugs 9, 424–447 (1974)Google Scholar
  30. 30.
    Ertan-Bolelli, T.; Bolelli, K.; Okten, S.; Kaynak-Onurdag, F.; Aki-Yalcin, E.; Yalcin, I.: Synthesis, antimicrobial activities of new sulfonamidobenzoxazoles and molecular docking studies on Escherichia coli TEM-1 \(\upbeta \)-Lactamase. Croat. Chem. Acta 90, 67–74 (2017)CrossRefGoogle Scholar
  31. 31.
    Rupp, M.E.; Fey, P.D.: Extended spectrum \(\upbeta \)-lactamase (ESBL)-producing entero-bacteriaceae: considerations for diagnosis, prevention and drug treatment. Drugs 63, 353–365 (2003)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Division of Chemistry and BiotechnologyDongguk UniversityGyeongjuRepublic of Korea
  2. 2.Department of Advanced Materials ChemistryDongguk UniversityGyeongjuRepublic of Korea

Personalised recommendations