Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 2795–2809 | Cite as

Response Surface Methodology Integrated with Desirability Function and Genetic Algorithm Approach for the Optimization of CNC Machining Parameters

  • Ender HazirEmail author
  • Tuncay Ozcan
Research Article - Systems Engineering


In this study, response surface method (RSM), desirability function (DF) and genetic algorithm (GA) techniques were integrated to estimate optimal machining parameters that lead to minimum surface roughness value of beech (Fagus orientalis Lipsky) species. Design of experiment was used to determine the effect of computer numerical control machining parameters such as spindle speed, feed rate, tool radius and depth of cut on arithmetic average roughness (\(R_{\mathrm{a}}\)). Average surface roughness values of the samples were measured by employing a stylus type equipment. The second-order mathematical model was developed by using response surface methodology with experimental design results. Optimum machining condition for minimizing the surface roughness was carried out in three stages. Firstly, the DF was used to optimize the mathematical model. Secondly, the results obtained from the desirability function were selected as the initial point for the GA. Finally, the optimum parameter values were obtained by using genetic algorithm. Experimental results showed that the proposed approach presented an efficient methodology for minimizing the surface roughness.


Response surface method Computer numerical control Genetic algorithm Desirability function Wood material Surface roughness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to thank TUBITAK for support during the doctoral thesis.


  1. 1.
    Ozdemir, T.; Hiziroglu, S.: Evaluation of some sanding factors on the surface roughness of particleboard. Silva Fenn. 41, 373–378 (2007)Google Scholar
  2. 2.
    Ratnasingman, J.; Scholz, F.: Optimal surface roughness for high-quality on Rubberwood. Holzals Roh-und Werkst. 64, 343–345 (2006)CrossRefGoogle Scholar
  3. 3.
    Magoss, E.: General regularities of wood surface roughness. Acta Silv. Lign. Hung. 4, 81–93 (2008)Google Scholar
  4. 4.
    Philbin, P.; Gordon, S.: Recent research on the machining of wood-based composite materials. Int. J. Mach. Mach. Mater. 1, 186–201 (2006)Google Scholar
  5. 5.
    Hiziroglu, S.: Surface roughness analysis of wood composites: a stylus method. For. Prod. J. 46, 34–42 (1996)Google Scholar
  6. 6.
    Hiziroglu, S.; Kosonkorn, P.: Evaluation of surface roughness of Thai medium density fiberboard (MDF). Build. Environ. 41, 527–533 (2006)CrossRefGoogle Scholar
  7. 7.
    Sarikaya, M.; Güllü, A.: Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL. J. Clean. Prod. 65, 604–616 (2016)CrossRefGoogle Scholar
  8. 8.
    Asiltürk, I.; Neşeli, S.; İnce, M.A.: Optimization of parameters affecting surface roughness of Co28CrMo medical material during CNC lathe machining by using the Taguchi and RSM methods. Measurement 78, 120–128 (2016)CrossRefGoogle Scholar
  9. 9.
    Bhalamurugan, R.; Prabhu, S.: Performance characteristic analysis of automated robot spray painting using Taguchi method and Gray relational analysis. Arab. J. Sci. Eng. 40, 1657–1667 (2015)CrossRefGoogle Scholar
  10. 10.
    Shivakoti, I.; Pradham, B.B.; Diyaley, S.; Ghadai, R.K.; Kalita, K.: Fuzzy TOPSIS-based selection of laser beam micro-marking process parameters. J. Sci. Eng. Arab. (2017).
  11. 11.
    Mellal, A.M.; Williams, J.E.: Parameter optimization of advanced machining process using cuckoo optimization algorithm and hoopoe heuristic. J. Intell. Manuf. 27, 927–942 (2016)CrossRefGoogle Scholar
  12. 12.
    Samanta, B.: Surface roughness prediction in machining using soft computing. Int. J. Comput. Integr. Manuf. 22(3), 257–266 (2009)CrossRefGoogle Scholar
  13. 13.
    Aydın, M.; Karakuzu, C.; Mehmet, U.; Abdulkadir, C.; Cavusoglu, A.M.: Prediction of surface roughness and cutting zone temperature in dry turning process of AISI304 stainless steel using ANFIS with PSO. Int. J. Manuf. Technol. 67, 957–967 (2013)CrossRefGoogle Scholar
  14. 14.
    Anad, K.; Elangovan, S.: Optimizing the ultrasonic inserting parameters to achieve maximum pull- Out strength using response surface methodology and genetic algorithm integration technique. Measurement 99, 145–154 (2017)CrossRefGoogle Scholar
  15. 15.
    Zhou, Y.; Gong, Y.; Zhu, Z.; Gao, Q.; Wen, X.: Modeling and optimization of surface roughness from microgrinding of nickel-based single crystal superalloy using the response surface methodology and genetic algorithm. Int. J. Adv. Manuf. Technol. 85, 2607–2622 (2016)CrossRefGoogle Scholar
  16. 16.
    Kilickap, E.; Huseyinoglu, M.; Yardimeden, A.: Optimization of drilling parameters on surface roughness in drilling of AISI 1045 using response surface methodology and genetic algorithm. Int. J. Adv. Manuf. Technol. 52, 79–88 (2011)CrossRefGoogle Scholar
  17. 17.
    Davim, J.P.; Clemente, V.C.; Silva, S.: Surface roughness aspects in milling MDF (medium density fiberboard). Int. J. Adv. Manuf. Technol. 40, 49–55 (2009)CrossRefGoogle Scholar
  18. 18.
    Prakash, S.; Palanikumar, K.: Modeling for prediction of surface roughness in drilling MDF panels using response surface methodology. J. Compos. Mater. 45, 1639–1646 (2010)CrossRefGoogle Scholar
  19. 19.
    Deus, P.R.D.; Alves, M.C.S.; Vieira, F.H.A.: The quality of MDF workpieces machined in CNC milling machine in cutting speeds, feed rate, and depth of cut. Meccanica 50(12), 2899–2906 (2015)CrossRefGoogle Scholar
  20. 20.
    Sutcu, A.; Karagöz, Ü.: Effect of machining parameters on surface quality after face milling of MDF. Wood Res. 57(2), 231–240 (2012)Google Scholar
  21. 21.
    Sofuoglu, D.S.: Determination of optimal machining parameters of massive wooden edge glued panels which is made of Scots pine (Pinus sylvestris L.) using Taguchi design method. Eur. J. Wood Prod. (2016).
  22. 22.
    Koc, K.H.; Erdinler, S.E.; Hazir, E.; Öztürk, E.: Effect of CNC application parameters on wood surface quality. Measurement 107, 12–18 (2017)CrossRefGoogle Scholar
  23. 23.
    Zain, A.M.; Haron, H.; Sharif, S.: Integration of simulated annealing and genetic algorithm to estimate optimal solutions for minimizing surface roughness in end milling Ti-6AL-4V. Int. J. Comput. Integr. Manuf. 24(6), 574–592 (2011)CrossRefGoogle Scholar
  24. 24.
    Bharathi, S.R.; Baskar, N.: Particle swarm optimization technique for determining optimal machining parameters of different work piece materials in turning operation. Int. J. Adv. Manuf. Technol. 54, 445–463 (2011)CrossRefGoogle Scholar
  25. 25.
    Colak, Q.; Kurbanoglu, C.; Kayacan, M.C.: Milling surface roughness prediction using evolutionary programming methods. Mater. Des. 28, 657–666 (2007)CrossRefGoogle Scholar
  26. 26.
    Mahesh, G.; Muthu, S.; Devadasan, S.R.: Prediction of surface roughness of end milling operation using genetic algorithm. Int. J. Adv. Manuf. Technol. 77(1–4), 369–381 (2015)CrossRefGoogle Scholar
  27. 27.
    Brezocnik, M.; Kovacic, M.; Ficko, M.: Prediction of surface roughness with genetic programming. J. Mater. Process. Technol. 157, 28–36 (2004)CrossRefGoogle Scholar
  28. 28.
    Oktem, H.; Erzurumlu, T.; Erzincanli, F.: Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm. Mater. Des. 27(9), 735–744 (2006)CrossRefGoogle Scholar
  29. 29.
    Sahoo, P.: Optimization of turning parameters for surface roughness using RSM And GA. Adv. Prod. Eng. Manag. 6(3), 197–208 (2011)Google Scholar
  30. 30.
    Coelho, C.L.; Carvalho, L.M.H.; Martins, J.M.; Costa, V.A.V.; Masson, D.; Meausooner, P.J.: Method for evaluating the influence of wood machining conditions on the objective characterization and subjective perception of a finished surface. Wood Sci. Technol. 42, 181–195 (2008)CrossRefGoogle Scholar
  31. 31.
    Hiziroglu, S.; Zhong, Z.W.; Ong, W.K.: Evaluation of bonding strength of pine, oak and nyatoh wood species related to their surface roughness. Measurement 49, 397–400 (2014)CrossRefGoogle Scholar
  32. 32.
    ISO 4287: Geometrical Product Specifications (GPS) Surface Texture: Profile Method-Terms, Definitions, and Surface Texture Profile Method Terms, Definitions and Surface Texture Parameters. International Organization for Standardization, Geneva (1997)Google Scholar
  33. 33.
    Montgomery, D.C.: Design and Analysis of Experiments, 4th edn. Wiley, New York (1997)zbMATHGoogle Scholar
  34. 34.
    Antony, J.: Design of Experiments for Engineers and Scientists. Elsevier, London (2014)Google Scholar
  35. 35.
    Palanikumar, K.; Muthukrishnan, N.; Hariprasad, K.S.: Surface roughness parameters optimization in machining A356/SiC/20p metal matrix composites by PCD tool using response surface methodology and desirability function. Mach. Sci. Technol. 12, 529–545 (2008)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Forest Industrial Engineering, Faculty of ForestryIstanbul University - CerrahpasaIstanbulTurkey
  2. 2.Department of Industrial Engineering, Faculty of EngineeringIstanbul University - CerrahpasaIstanbulTurkey

Personalised recommendations