Arabian Journal for Science and Engineering

, Volume 44, Issue 5, pp 4795–4805 | Cite as

Investigation of Thermal Reflective Cracking in Asphalt Pavement Using XFEM Coupled with DFLUX Subroutine and FILM Subroutine

  • Xiaoying Wang
  • Kai Li
  • Yang ZhongEmail author
  • Qian Xu
Research Article - Civil Engineering


Reflective cracking of asphalt concrete overlays is one of the major distresses in semi-rigid base asphalt pavement, which results in other destroy. Numerous numerical methods are performed to evaluate the fracture mechanism of reflective cracking. However, a very limited amount of the method has been performed to simulate the initiation and propagation of cracking. Extended finite element method (XFEM) is particularly suitable to simulate cracking propagation, which extends arbitrarily. In this paper, the model of semi-rigid base asphalt pavement structure is built and thermal reflective cracking mechanism is studied using XFEM coupled with DFLUX subroutine and FILM subroutine. What’s more, in order to better understand the influences of interface between overlay and upper base on the reflective cracking, cohesive element with different modulus is used to simulate the tack coat. A series of simulations with different initial cracking lengths and interface conditions between overlay and upper base are conducted to work on the reflective cracking mechanism. The results presented in this paper provide a new method to study the propagation of thermal reflective cracking in semi-rigid base asphalt pavement. The temperature field in pavement is easily obtained using DFLUX subroutine and FILM subroutine. What’s more, the conclusion indicates that initial cracking length and interface condition are the critical factors to the initiation and propagation of thermal reflective cracking.


Semi-rigid base asphalt pavement Thermal reflective cracking Extended finite element method Interface condition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work presented in this paper was partly sponsored by Key Research and Development Plan of Shandong Province (2017GGX50101), A Project of Shandong Province Higher Educational Science and Technology Program (J16LG61) and Soft Science Research Plan of Shandong Province (2017RKB01068).


  1. 1.
    Dugdale, D.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8(2), 100–104 (1960)CrossRefGoogle Scholar
  2. 2.
    Barenblatt, G.I.: Mathematical theory of equilibrium cracks. Adv. Appl. Mech. 7, 56–129 (1962)Google Scholar
  3. 3.
    Needleman, A.: A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 54(3), 525 (1987)CrossRefzbMATHGoogle Scholar
  4. 4.
    Jenq, Y.S.; Perng, J.D.: Analysis of crack propagation in asphalt concrete using cohesive crack model. Transp. Res. Rec. 1317, 90–99 (1991)Google Scholar
  5. 5.
    Jenq, Y.S.; Liaw, C.J.; Liu, P.: Analysis of crack resistance of asphalt concrete overlays: a fracture mechanics approach. Transp. Res. Rec. 1038, 160–166 (1993)Google Scholar
  6. 6.
    Song, S.H.; Paulino, G.H.; Buttlar, W.G.: A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material. Eng. Fract. Mech. 73(18), 2829–2848 (2006)CrossRefGoogle Scholar
  7. 7.
    Cannone Falchetto, A.; Moon, K.H.; Lee, C.B.; Wistuba, M.P.: Correlation of low temperature fracture and strength properties between SCB and IDT tests using a simple 2D FEM approach. Road Mater. Pavement Des. 18(2), 329–338 (2017)CrossRefGoogle Scholar
  8. 8.
    Peng, Y.; Wan, L.; Sun, L.-J.: Three-dimensional discrete element modelling of influence factors of indirect tensile strength of asphalt mixtures. Int. J. Pavement Eng. (2017).
  9. 9.
    Kim, Y.; Allen, D.H.; Little, D.N.: Computational constitutive model for predicting nonlinear viscoelastic damage and fracture failure of asphalt concrete mixtures. Int. J. Geomech. 7(2), 102–111 (2007)CrossRefGoogle Scholar
  10. 10.
    Kim, Y.; Allen, D.H.; Little, D.N.: Computational model to predict fatigue damage behavior of asphalt mixtures under cyclic loading. Transp. Res. Rec. 1970(1), 196–206 (2006)CrossRefGoogle Scholar
  11. 11.
    Kim, Y.; Aragao, F.T.S.; Allen, D.H.; Little, D.N.: Damage modeling of bituminous mixtures considering mixture microstructure, viscoelasticity, and cohesive zone fracture. Can. J. Civ. Eng. 37(8), 1125–1136 (2010)CrossRefGoogle Scholar
  12. 12.
    Soares, J.; de Freitas, F.; Allen, D.: Considering material heterogeneity in crack modeling of asphaltic mixtures. Transp. Res. Rec. J. Transp. Res. Board 1832, 113–120 (2003)CrossRefGoogle Scholar
  13. 13.
    Caro, S.; Masad, E.; Bhasin, A.; Little, D.: Coupled micromechanical model of moisture-induced damage in asphalt mixtures. J. Mater. Civ. Eng. 22(4), 380–388 (2010)CrossRefGoogle Scholar
  14. 14.
    Caro, S.; Masad, E.; Bhasin, A.; Little, D.: Micromechanical modeling of the influence of material properties on moisture-induced damage in asphalt mixtures. Constr. Build. Mater. 24(7), 1184–1192 (2010)CrossRefGoogle Scholar
  15. 15.
    Ban, H.; Im, S.; Kim, Y.-R.; Jung, J.S.: Laboratory tests and finite element simulations to model thermally induced reflective cracking of composite pavements. Int. J. Pavement Eng. 18(6), 1–11 (2017)Google Scholar
  16. 16.
    Kruntcheva, M.R.; Collop, A.C.; Thom, N.H.: Effect of bond condition on flexible pavement performance. J. Transp. Eng. 131(11), 880–888 (2005)CrossRefGoogle Scholar
  17. 17.
    Ziari, H.; Khabiri, M.M.: Interface condition influence on prediction of flexible pavement life. J. Civ. Eng. Manag. 13(1), 71–76 (2007)CrossRefGoogle Scholar
  18. 18.
    Belytschko, T.; Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45(5), 601–620 (1999)CrossRefzbMATHGoogle Scholar
  19. 19.
    Melenk, J.M.; Babuska, I.: The partition of unity finite element method basic theory and applications. Comput. Methods Appl. Mech. Eng. 139(1–4), 289–314 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Elguedj, T.; Gravouil, A.; Combescure, A.: Appropriate extended functions for X-FEM simulation of plastic fracture mechanics. Comput. Methods Appl. Mech. Eng. 195(7–8), 501–515 (2006)CrossRefzbMATHGoogle Scholar
  21. 21.
    Schiavone, A.; Abeygunawardana-Arachchige, G.; Silberschmidt, V.V.: Crack initiation and propagation in ductile specimens with notches: experimental and numerical study. Acta Mech. 227(1), 203–215 (2015)CrossRefGoogle Scholar
  22. 22.
    Zaafouri, M.; Wali, M.; Abid, S.; Jamal, M.; Dammak, F.: The extended finite element method for cracked incompressible hyperelastic structures analysis. Multiphys. Model. Simul. Syst. Des. Monit. 2, 531–540 (2015)Google Scholar
  23. 23.
    Wang, B.; De Backer, H.; Chen, A.: An XFEM based uncertainty study on crack growth in welded joints with defects. Theor. Appl. Fract. Mech. 86, 125–142 (2016)CrossRefGoogle Scholar
  24. 24.
    Chen, Y.; Wang, J.: Simulation of crack propagation in asphalt concrete pavement at low temperature using extended finite element method. In: Proceedings of International Workshop on Energy and Environment in the Development of Sustainable Asphalt Pavements, pp. 420–425 (2010)Google Scholar
  25. 25.
    Feng, D.; Tian, L.; Cao, P.: Study on longitudinal cracking during settlement of soil based on extended finite element method. Eng. Mech. 28(5), 145–154 (2011)Google Scholar
  26. 26.
    Peng, P.; She, M.: Crack propagation of asphalt concrete overlay based on XFEM. Highw. Eng. 37(4), 201–206 (2012)Google Scholar
  27. 27.
    Lancaster, I.M.; Khalid, H.A.; Kougioumtzoglou, I.A.: Extended FEM modelling of crack propagation using the semi-circular bending test. Constr. Build. Mater. 48, 270–277 (2013)CrossRefGoogle Scholar
  28. 28.
    Li, L.K.; Zhou, Y.T.; Cao, P.; Wang, Y.N.: Analysis of ultimate load-bearing capacity for dowel bar system in rigid pavement based on XFEM. Appl. Mech. Mater. 444–445, 961–965 (2013)Google Scholar
  29. 29.
    Rokhi, M.M.; Shariati, M.: Implementation of the extended finite element method for coupled dynamic thermoelastic fracture of a functionally graded cracked layer. J. Braz. Soc. Mech. Sci. Eng. 35(2), 69–81 (2013)CrossRefzbMATHGoogle Scholar
  30. 30.
    Wang, H.; Zhang, C.; Yang, L.; You, Z.: Study on the rubber-modified asphalt mixtures’ cracking propagation using the extended finite element method. Constr. Build. Mater. 47, 223–230 (2013)CrossRefGoogle Scholar
  31. 31.
    Sukumar, N.; Huang, Z.Y.; Prévost, J.H.; Suo, Z.: Partition of unity enrichment for bimaterial interface cracks. Int. J. Numer. Methods Eng. 59(8), 1075–1102 (2004)CrossRefzbMATHGoogle Scholar
  32. 32.
    Huang, R.; Sukumar, N.; Prévost, J.H.: Modeling quasi-static crack growth with the extended finite element method. Part II. Numerical applications. Int. J. Solids Struct. 40(26), 7539–7552 (2003)CrossRefzbMATHGoogle Scholar
  33. 33.
    Liao, G.; Huang, X.: Abaqus Finite Element Software Used in Pavement Engineering. Southeast University Press, Nanjing (2014)Google Scholar
  34. 34.
    Lu, W.Y.; Hu, S.W.: Effect of large crack-depth ratio on three-point bending concrete beam with single edge notch. Mater. Res. Innov. 19(8), 312–317 (2015)Google Scholar
  35. 35.
    Ding, B.; Zou, X.; Peng, Z.; Liu, X.: Evaluation of fracture resistance of asphalt mixtures using the single-edge notched beams. Adv. Mater. Sci. Eng. 2018, 1–9 (2018)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Faculty of Infrastructure EngineeringDalian University of TechnologyDalianChina
  2. 2.Key Laboratory for Micro/Nano Technology and System of Liaoning ProvinceDalianChina

Personalised recommendations