Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 2389–2398 | Cite as

Discrete-Time Flatness-Based Control Design for LTV MIMO Systems

  • Marouen SleimiEmail author
  • Mohamed Ben Abdallah
  • Mounir Ayadi
Research Article - Electrical Engineering


This paper deals with the design of an linear time-varying (LTV) controller for multiple-input multiple-output (MIMO) systems. Using the concept of differential flatness property combined with a dead-beat observer, we propose as a result a two-degree-of-freedom (2-DoF) controller without the need to solve Bezout equation and avoid left and right matrix factorizations in a MIMO case. The main contribution of this paper is to generalize the previous works of Ben Abdallah et al. (in: Conférence Internationale Francophone de l’Automatique, CIFA, 2012, in: International journal of dynamics and control (IJDY). Springer, New York, 2013, in: International conference on control, decision and information technologies, CoDIT, Metz, 2014, Sleimi et al. in: IEEE 4th international conference on control engineering and information technology, CEIT, Hammamet, 2016) to deal with discrete-time flatness-based control for LTV MIMO systems leading to a 2-DoF controller. Simulation results of an academic system are given to illustrate the efficiency of the proposed methodology.


Flatness theory Discrete-time systems LTV MIMO systems Dead-beat observer 2-DoF controller 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rigato, G.: Nonlinear Control and Filtring Using Differential Flatness Approaches: Application on Electromechanical Systems. Springer, Berlin (2015)CrossRefGoogle Scholar
  2. 2.
    Markus, E.; Agee, J.; Jimoh, A.: Flat control of industrial robotic manipulators. Robot. Auton. Syst. 87, 226–236 (2017)CrossRefGoogle Scholar
  3. 3.
    Fliess, M.; Levine, J.; Martin, P.; Rouchon, P.: Flatness and detect of non-linear systems: introductory theory and examples. Int. J. Control 61(6), 1327–1361 (1995)CrossRefzbMATHGoogle Scholar
  4. 4.
    Rotella, F.; Carrillo, F.; Ayadi, M.: Digital flatness-based robust controller applied to a thermal process. In: IEEE International Conference on Control applications, pp. 936–941 (2001)Google Scholar
  5. 5.
    Schroidel, F.; Essam, M.; Adel, D.: Parameter space approach boud state feedback control of LTV systems. In: 22nd Mediterranean Conference on Control and Automation (MED). June 16–19 (2014)Google Scholar
  6. 6.
    Gracy, S.; Garin, F.; Kibangou, Y.A.: Strong structural input and state observability of LTV network systems with multipe unknown inputs. In: IFAC World Congress, pp. 7618–7623 (2017)Google Scholar
  7. 7.
    Nguyen, H.N.: Constrained Control of Uncertain, Time-Varying, Discrete-Time Systems. Springer, Berlin (2014)CrossRefzbMATHGoogle Scholar
  8. 8.
    Utkin, V.I.: Variable structure systems with sliding mode. IEEE Trans. Autom. Control 22(2), 212–222 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Decarlo, R.A.; Zak, S.H.; Mathews, G.: Variable structure conrol of nonlinear multivariable systems: a tutorial. Proc. IEEE 76, 3 (1988)CrossRefGoogle Scholar
  10. 10.
    Levigne, J.: Analysis and Control of Nonlinear Systems: A Flatness-Based Approach. Springer, Berlin (2009)CrossRefGoogle Scholar
  11. 11.
    Aimene, M.; Payman, A.; Dakyo, B.: Flatness-based control of a variable-speed wind-energy system connected to the grid. In: Ecologgical Vehicles and Renewable Energy (2014)Google Scholar
  12. 12.
    Xu, Y.; Li, F.; Jin, Z.; Huang, C.: Flatness-based adaptative control (FBAC) of STATCOM. Electr. Power Syst. Res. 122, 76–85 (2015)CrossRefGoogle Scholar
  13. 13.
    Ben Abdallah, M.; Ayadi, M.; Rotella, F.; Benrejeb, M.: Régulateurs polynomiaux par platitude pour la commande des systèmes non stationnaires. Conférence Internationale Francophone de l’Automatique, CIFA (2012)Google Scholar
  14. 14.
    Ben Abdallah, M.; Ayadi, M.; Rotella, F.; Benrejeb, M.: LTV controller flatness-based design for MIMO systems. Int. J. Dyn. Control (IJDY) 2, 335–345 (2013)CrossRefGoogle Scholar
  15. 15.
    Ben Abdallah, M.; Ayadi, M.; Rotella, F.; Benrejeb, M.: Towards a two-degree-of freedom flatness-based controller for MIMO LTI systems. In: International Conference on Control, Decision and Information Technologies, CoDIT, Metz, Novembre (2014)Google Scholar
  16. 16.
    Ben abdallah, M.: Sur la commande par platitude de systèmes dynamiques SISO et MIMO, Ph.d. thesis. Ecole Nationale d’Ingénieur de Tunis (2014)Google Scholar
  17. 17.
    Ayadi, M.: Contributions à la commande des systèmes linèaires plats de dimension finie, Ph.d. thesis, Institut National Polytechnique de Toulouse, Tarbes (2002)Google Scholar
  18. 18.
    Horowitz, I.M.: Synthesis of Feedback Systems. Wiley, Hoboken (1963)zbMATHGoogle Scholar
  19. 19.
    Gantmacher, F.R.: The Theory of Matrices. Chelsea Publishing Company, Chelsea (1959)zbMATHGoogle Scholar
  20. 20.
    Gohberg, I.C.; Lancaster, P.; Rodman, L.: Matrix Polynomials. Academic Press, New York (1982)zbMATHGoogle Scholar
  21. 21.
    Kailath, T.: Linear Systems. Prentice Hall, Englewood Cliffs, New Jersey (1980)zbMATHGoogle Scholar
  22. 22.
    Stefanidis, P.; Paplinski, A.P.; Gibbard, M.J.: Numerical Operationswith Polynomial Matrices. Lecture Notes in Control and Information Sciences, 171, Berlin, Springer-Verlag (1992)Google Scholar
  23. 23.
    Chen, C.T.: Linear System Theory and Design. Oxford University Press, New York (1999)Google Scholar
  24. 24.
    Lai, Y.S.: An algorithm for solving the matrix polynomial equation \(A(s)X(s) + B(s)Y (s) = C(s)\). IEEE Trans. Circuits Syst. 36, 1087–1089 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kamen, E.W.: The poles and zeros of a linear time-varying system. Linear Algebra Appl. 98, 263–289 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    O’Brien, R.T.; Iglesias, P.A.: On the poles and zeros of linear time-varying system. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 48(5), 565–577 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zhu, J.J.: Series and parallel d-spectra for multi-input-multi-output linear time-varying systems. In: Proceedings of the South-Eastern Symposium on Systems Theory, Baton Rouge, Los Angelos, 31 March–2 April, pp. 125–129 (1996)Google Scholar
  28. 28.
    Marinescu, B.; Bourlès, H.: An intrinsic algebraic setting for poles and zeros of linear time-varying systems. Syst. Control Lett. 58, 248–253 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Marinescu, B.: Output feedback pole placement for linear time-varying systems with application to the control of nonlinear systems. Automatica 46(4), 1524–1530 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Silverman, L.M.; Meadows, H.E.: Controllability ans observability in time-variable linear systems. SIMA J. Control Optim. 5, 64–73 (1967)CrossRefzbMATHGoogle Scholar
  31. 31.
    Reising, G.; Harting, C.; Svaricek, F.: Strong structural controllability and observability of linear time-varying systems. IEEE Trans. Autom. Control 59, 3087–3092 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Luenberger, D.G.: Canonical forms for multivariable systems. IEEE Trans. Autom. Control 12(3), 290–293 (1967)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Yong, S.Z.; Paden, B.; Frazzoli, E.: Computational methods for MIMO flat linear systems: flat output characterization. In: Test and Tracking Control. American Control Conference, Chicago, IL, USA (2015)Google Scholar
  34. 34.
    Fliess, M.; Levine, J.; Martin, P.; Rouchon, P.: A Lie-Backlund approch to equivalence and flatness of non linear systems. IEEE Trans. Autom. Control 44, 922–937 (1999)CrossRefzbMATHGoogle Scholar
  35. 35.
    Kamen, E.W.: Fundamentals of Linear Time-Varying Systems. The Control Handbook, Control System Advanced Methods, 2nd edn. Taylor and Francis Group, London (2011)Google Scholar
  36. 36.
    Sleimi, M.; Ben Abdallah, M.; Ayadi, M.: Digital flatness-based control design for LTI MIMO systems. In: IEEE 4th International Conference on Control Engineering and Information Technology, CEIT, Hammamet (2016)Google Scholar
  37. 37.
    Ben Abdallah, M.; Ayadi, M.; Rotella, F.; Benrejeb, M.: Time-varying controller based on flatness for nonlinear anti-lock brake system, Systems Science and Control Engineering: An Open Access Journal. Published by Taylor and Francis (2013)Google Scholar
  38. 38.
    Sun, H.; Butt, S.S.; Asherman, H.: Discrete-time flatness-based control for a twin rotor helicopter with an extended Kalman filter. In: IEEE International Conference on Advanced Intelligent Mechatronics, Banff, AB (2016)Google Scholar
  39. 39.
    Paulo, S.; Rouchon, P.: Flatness based control of a single qubit gate. IEEE Trans. Autom. Control 53, 775–779 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Butt, S.S.; Parabel, R.; Asherman, H.: Multi-variable flatness-based control of a helicopter with two degrees of freedom. In: International Conference on Control. Decision and Information Technologies, CoDIT, Metz, Novembre (2014)Google Scholar
  41. 41.
    Fiacchini, M.; Millerioux, G.: Dead-Beat functional observers for discrete-time LPV systems with unknown inputs. IEEE Trans. Autom. Control 58, 3230–3235 (2013)CrossRefGoogle Scholar
  42. 42.
    Chen, M.; Shi, P.; Lim, C.C.: Adaptive neural fault tolerant control of a 3-DOF model helicopter system. IEEE Trans. Syst. Man Cybern. Syst. 46(2), 260–270 (2016)CrossRefGoogle Scholar
  43. 43.
    Zhao, S.; Shmaliy, Y.S.; Ahn, C.K.; Shi, P.: Real-time optimal state estimation of multi-DOF industrial systems using FIR filtering. IEEE Trans. Ind. Inform. 13(3), 967–975 (2017)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.University of Tunis El Manar National Engineering School of TunisTunisTunisia
  2. 2.Higher Institute of Technology Study of RadesRadès MédinaTunisia

Personalised recommendations