Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1379–1392 | Cite as

Some Insights on Unsteady Double Diffusive Natural Convection of Porous Medium in Vertical Open-Ended Cylinder

  • N. HimraneEmail author
  • D. E. Ameziani
  • M. El Ganaoui
  • H. Ragueb
Research Article - Mechanical Engineering
  • 15 Downloads

Abstract

The work presented in this paper deals with combined heat and mass transfer by natural convection in porous media. The aim is to investigate numerically the effect of control parameters on the flow behavior as well as the enhancement of heat transfer in vertical porous enclosure. The side wall temperature is periodic function of time which is the case in several physical problems. The Darcy’s flow model coupled with the energy and mass equations is considered. The numerical results show that the flow’s behavior is strongly dependent on the buoyancy ratio values. Three types of flows take place: chimney, reversal and top aspiration flow. Further, the effect of buoyancy ratio (N) at which the different flow types occur is significantly influenced by the values of control parameters. The relative heat transfer enhancement between constant and periodical wall temperature is profoundly affected by thermal Rayleigh number (Ra), buoyancy ratio and dimensionless amplitude (XA). In the case of opposing double diffusive flow, the relative difference becomes to the favor of the stationary case for high Ra and XA.

Keywords

Double diffusive convection Porous medium Open-ended channel Darcy’s flow model 

Nomenclature

A

Aspect ratio, \({A}={R}/{H}\)

\({Ak}'\)

Reaction rate, \(\hbox {s}^{-1}\)

Ak

Dimensionless lumped reaction rate

Bi

Biot number

\({ Bi}_{\mathrm{m}}\)

Mass transfer Biot number

\({C}_{{\mathrm{P}}}\)

Specific heat, J \(\hbox {kg}^{-1}~\hbox {K}^{-1}\)

C

Non-dimensional concentration

D

Solutal diffusivity, \(\hbox {m}^{2}~\hbox {s}^{-1}\)

G

Acceleration of the gravity, m \(\hbox {s}^{-2}\)

h

Convective heat transfer coefficient, \(\hbox {J}~\hbox {m}^{-2}~\hbox {K}~\hbox {s}^{-1}\)

H

Cylinder height, m

k

Thermal conductivity, J \(\hbox {m}^{-1}~\hbox {K}~\hbox {s}^{-1}\)

K

Permeability of porous media, \(\hbox {m}^{2}\)

Le

Lewis number, \(Le=\alpha _\mathrm{f} /{D}_{\mathrm{eff}} \)

Nu

Local Nusselt number

N

Buoyancy ratio

P

Non-dimensional pressure

Qr

Recirculation flow

r

Non-dimensional radial coordinate

R

Cylinder radius, m

Ra

Thermal Rayleigh number

\(R_{k}\)

Conductivity ratio

T

Non-dimensional temperature

t

Non-dimensional time

U, V

Dimensionless velocity components

x

Non-dimensional axial coordinate

XA

Non-dimensional amplitude

Greek symbols

\(\alpha \)

Thermal diffusivity, \(\hbox {m}^{2}~\hbox {s}^{-1}\)

\(\beta _\mathrm{T}\)

Thermal expansion coefficient, \(\hbox {kg}~\hbox {m}^{-3}\hbox { K}^{-1}\)

\(\beta _\mathrm{C}\)

Solutal expansion coefficient

\(\mu \)

Dynamic viscosity, kg \(\hbox {m}^{-1}\hbox { s}^{-1}\)

\(\rho \)

Fluid density, \(\hbox {kg}~\hbox {m}^{-3}\)

\(\sigma \)

Heat capacity ratio, \(\frac{( {\rho {C}_\mathrm{P} } )_{\mathrm{eff}} }{( {\rho {C}_\mathrm{P} } )_\mathrm{f} }\)

\(\varepsilon \)

Porosity

\(\tau \)

Non-dimensionless period

Subscripts

amb

Ambient

eff

Effective

f

Fluid

h

Hot

Ref

Reference

M

Medium

Max

Maximum

\('\)

dimensional quantity

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Das, R.; Ooi, K.T.: Predicting multiple combination of parameters for designing a porous fin subjected to a given temperature requirement. Energy Convers. Manag. 66, 211–219 (2013)CrossRefGoogle Scholar
  2. 2.
    Noah, O.O.; Slabber, J.F.; Meyer, J.P.: Natural convection heat transfer phenomena in packed bed systems. In: IMECE, ASME (2014)Google Scholar
  3. 3.
    Das, R.; Kundu, B.: Prediction of heat generation in a porous fin from surface temperature. J. Thermophys. Heat Transf. 31, 781–790 (2017)CrossRefGoogle Scholar
  4. 4.
    Singh, K.; Das, R.; Kundu, B.: Approximate analytical method for porous stepped fins with temperature-dependent heat transfer parameters. J. Thermophys. Heat Transf. 30, 661–672 (2017)CrossRefGoogle Scholar
  5. 5.
    Bejan, A.; Khair, K.R.: Heat and mass transfer by natural convection in a porous medium. Int. J. Heat Mass Transf. 28, 909–918 (1985)CrossRefzbMATHGoogle Scholar
  6. 6.
    Nield, D.A.: Onset of thermohaline convection in a porous medium. Water Resour. Res. 11, 553–560 (1968)CrossRefGoogle Scholar
  7. 7.
    Taunton, J.; Lightfoot, E.; Green, T.: Thermohaline instability and salt fingers in a Porous medium. Phys. Fluids 15, 748–753 (1972)CrossRefGoogle Scholar
  8. 8.
    Shipp, P.W.; Shoukri, M.; Carver, M.B.: Double diffusive natural convection in a closed annulus. Numer. Heat Transf. A Appl. 24, 339–356 (1993)CrossRefGoogle Scholar
  9. 9.
    Shipp, P.W.; Shoukri, M.; Carver, M.B.: Effect of thermal Rayleigh and Lewis numbers on double diffusive natural convection in closed annulus. Numer. Heat Transf. A Appl. 24, 451–465 (1993)CrossRefGoogle Scholar
  10. 10.
    Mamou, M.; Vasseur, P.; Bilgen, E.: Multiple solutions for double-diffusive convection in a vertical porous enclosure. Int. J. Heat Mass Transf. 38, 1787–1798 (1995)CrossRefzbMATHGoogle Scholar
  11. 11.
    Goyeau, B.J.; Songbe, P.; Gobin, D.: Numerical study of double-diffusive natural convection in a porous cavity using the Darcy–Brinkman formulation. Int. J. Heat Mass Transf. 39, 1363–1378 (1996)CrossRefzbMATHGoogle Scholar
  12. 12.
    Beji, H.; Bennacer, R.; Duval, R.; Vasseur, P.: Double-diffusive natural convection in a vertical porous annulus. Numer. Heat Transf. A Appl. 36, 153–170 (1999)CrossRefGoogle Scholar
  13. 13.
    Bennacer, R.; Tobbal, A.; Beji, H.; Vasseur, P.: Double diffusive convection in a vertical enclosure filled with anisotropic porous media. Int. J. Therm. Sci. 40, 30–41 (2001)CrossRefGoogle Scholar
  14. 14.
    Rathish Kumar, B.V.; Singh, P.; Bansod, V.J.: Effect of thermal stratification on double-diffusive natural convection in a vertical porous enclosure. Numer. Heat Transf. A Appl. 41, 421–447 (2002)CrossRefGoogle Scholar
  15. 15.
    Bennacer, R.; Mohamad, A.A.; El Ganaoui, M.: Analytical and numerical investigation of double diffusion in thermally anisotropy multilayer porous medium. Int. J. Heat Mass Transf. 41, 298–305 (2005)CrossRefGoogle Scholar
  16. 16.
    Ching-Yang, C.: Natural convection heat and mass transfer of non-newtonian power law fluids with yield stress in porous media from a vertical plate with variable wall heat and mass fluxes. Int. Commun. Heat Mass Transf. 33, 1156–1164 (2006)CrossRefGoogle Scholar
  17. 17.
    Ragui, K.; Boutra, A.; Benkahla, Y.K.: On the validity of a numerical model predicting heat and mass transfer in porous square cavities with a bottom thermal and solute source: case of pollutants spreading and fuel leaks. Mech. Ind. 17, 311 (2016)CrossRefGoogle Scholar
  18. 18.
    Jbara, A.; Harzallah, H.S.; Slimi, K.; Mhimid, A.: unsteady double-diffusive natural convection and thermal radiation within a vertical porous enclosure. J. Porous Media 16, 167–182 (2013)CrossRefGoogle Scholar
  19. 19.
    Himrane, N.; Ameziani, D.E.; Bouhadef, K.; Bennacer, R.: Storage silos self ventilation: interlinked heat and mass transfer phenomenon. Numer. Heat Transf. A Appl. 66, 379–401 (2014)CrossRefGoogle Scholar
  20. 20.
    Himrane, N.; Ameziani, D.E.; Bouhadef, K.; Bennacer, R.: Thermal enhancement in storage silos with periodic wall heating. Arab. J. Sci. Eng. 40, 623–637 (2015)Google Scholar
  21. 21.
    Chen, X.; Wang, S.; Tao, J.; Tan, W.: Stability analysis of thermosolutal convection in a horizontal porous layer using a thermal non-equilibrium model. Int. J. Heat Fluid Flow 32, 78–87 (2011)CrossRefGoogle Scholar
  22. 22.
    Boland, J.: The analytic solution of the differential equations describing heat flow in houses. Build. Environ. 37, 1027–1035 (2002)CrossRefGoogle Scholar
  23. 23.
    Lu, X.; Viljanen, M.: Analytical model for predicting whole building heat transfer. World Acad. Sci. Eng. Technol. 5, 544–548 (2011)Google Scholar
  24. 24.
    Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere/McGraw-Hill, New York (1980)zbMATHGoogle Scholar
  25. 25.
    Baytas, A.C.; Pop, I.: Free convection in a square porous cavity using a thermal non-equilibrium model. Int. J. Therm. Sci. 41, 861–870 (2002)CrossRefGoogle Scholar
  26. 26.
    Hadim, H.: Non-Darcy natural convection of a non-Newtonian fluid in a porous cavity. Int. Commun. Heat Mass Transf. 33, 1179–1189 (2006)CrossRefGoogle Scholar
  27. 27.
    Fohr, J.; Ben Moussa, H.: Heat and mass transfer in a cylindrical grain silo submitted to a periodical wall heat flux. J. Heat Mass Transf. 12, 1699–1712 (1994)CrossRefGoogle Scholar
  28. 28.
    Benasrallah, S.; Amara, T.; Du Peuty, M.A.: Convection naturelle instationnaire dans un cylindre rempli de grains ouvert à ses extrémités et dont la paroi est chauffée par un flux de chaleur constant: validité de l’hypothèse de l’équilibre thermique local. Int. J. Heat Mass Transf. 40, 1115–1168 (1997)zbMATHGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • N. Himrane
    • 1
    • 2
    Email author
  • D. E. Ameziani
    • 2
  • M. El Ganaoui
    • 3
  • H. Ragueb
    • 1
  1. 1.Laboratoire Energétique, Mécanique et Ingénierie (LEMI)Université M’Hamed Bougara Boumerdes (UMBB)BoumerdèsAlgeria
  2. 2.Laboratoire des Transports Polyphasiques et Milieu Poreux (LTPMP)Université des Sciences et de la Technologie Houari BoumedieneBab EzzouarAlgeria
  3. 3.Université de Lorraine, IUT Henri Poincaré de Longwy (LERMAB-Longwy)NancyFrance

Personalised recommendations