Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 5, pp 4725–4743 | Cite as

Experimental and Numerical Study of the Effects of Layer Orientation on the Mechanical Behavior of Shale

  • Zhaohui Chong
  • Xuehua LiEmail author
  • Peng Hou
Research Article-Civil Engineering
  • 58 Downloads

Abstract

Bedding planes are common in shale and significantly affect its mechanical behavior. In this paper, the main focus is investigating the effects of layer orientation on the mechanical behavior of shale under different confining pressures through physical experiments and numerical simulations. First, confining pressure tests were performed to investigate the parameter differences of specimens with vertical bedding planes (SVBPs) and specimens with horizontal bedding planes (SHBPs). Second, the statistical results of the length and spacing of bedding planes were employed to construct the simulation model. Third, the microparameters of the proposed model were confirmed with the results obtained from physical experiments, in which four key factors including deviatoric stress versus axial strain curve, peak strength, Young’s modulus and failure mode were all used to calibrate the feasibility and reliability of the numerical simulation. Finally, a systematic simulation was conducted to investigate the effects of layer orientation on the mechanical behavior of shale. The results show that the mechanical parameters (deviatoric stress vs. axial strain curve, peak strength, Young’s modulus, cohesion and internal friction angle) are greatly affected by layer orientation. Tensile cracking of the rock matrix is dominant in specimens with both vertical and horizontal bedding planes. The crack initiation threshold (CIT) of SVBPs is smaller than that of SHBPs, but the crack damage threshold (CDT) is similar. The percentages of CIT and CDT are nearly unchanged under different confining pressures in both types of specimens. The conformity between the simulation results and physical experiment results suggests that the research method proposed in this study can advance the understanding of rock mass mechanical behavior.

Keywords

Bedding plane Confining pressure Discrete element method (DEM) Crack type Failure mode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The funding was provided by The Fundamental Research Funds for the Central Universities (Grant No. 2017XKZD06).

References

  1. 1.
    Dawson, G.K.W.; Golding, S.D.; Esterle, J.S.; Massarotto, P.: Occurrence of minerals within fractures and matrix of selected Bowen and Ruhr Basin coals. Int. J. Coal Geol. 94, 150–166 (2012)CrossRefGoogle Scholar
  2. 2.
    Zhao, K.D.; Jiang, S.Y.; Nakamura, E.; Moriguti, T.; Wei, H.Z.: A preliminary study on boron isotope fractionation of major rock-forming minerals in granite. Acta Petrol. Sin. 31, 740–746 (2015)Google Scholar
  3. 3.
    Fjær, E.: Impact of the intermediate principal stress on the strength of heterogeneous rock. J. Geophys. Res. 107, ECV-1-ECV 3-10 (2002).  https://doi.org/10.1029/2001JB000277
  4. 4.
    Golikov, P.; Avseth, P.; Stovas, A.; Bachrach, R.: Rock physics interpretation of heterogeneous and anisotropic turbidite reservoirs. Geophys. Prospect. 61, 448–457 (2013)CrossRefGoogle Scholar
  5. 5.
    Amann, F.; Ündül, Ö.; Kaiser, P.K.: Crack initiation and crack propagation in heterogeneous sulfate–rich clay rocks. Rock Mech. Rock Eng. 47, 1849–1865 (2014)CrossRefGoogle Scholar
  6. 6.
    Xue, L.; Qin, S.; Sun, Q.; Wang, Y.; Lee, L.M.; Li, W.: A study on crack damage stress thresholds of different rock types based on uniaxial compression tests. Rock Mech. Rock Eng. 47, 1183–1195 (2014)CrossRefGoogle Scholar
  7. 7.
    Zhang, X.; Wong, L.N.Y.: Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach. Rock Mech. Rock Eng. 46, 1001–1021 (2013)CrossRefGoogle Scholar
  8. 8.
    McGlade, C.; Speirs, J.; Sorrell, S.: Unconventional gas-A review of regional and global resource estimates. Energy 55, 571–584 (2013)CrossRefGoogle Scholar
  9. 9.
    Nagel, N.B.; Sanchez-Nagel, M.A.; Zhang, F.; Garcia, X.; Lee, B.: Coupled numerical evaluations of the geomechanical interactions between a hydraulic fracture stimulation and a natural fracture system in shale formations. Rock Mech. Rock Eng. 46, 581–609 (2013)CrossRefGoogle Scholar
  10. 10.
    Xia, B.; Zhang, X.; Yu, B.; Jia, J.: Weakening effects of hydraulic fracture in hard roof under the influence of stress arch. Int. J. Min. Sci. Technol. (2018).  https://doi.org/10.1016/j.ijmst.2017.12.024
  11. 11.
    Zou, Y.; Ma, X.; Zhang, S.; Zhou, T.; Li, H.: Numerical investigation into the influence of bedding plane on hydraulic fracture network propagation in shale formations. Rock Mech. Rock Eng. 49, 3597–3614 (2016)CrossRefGoogle Scholar
  12. 12.
    Borrego, A.G.; Hagemann, H.W.; Prado, J.G.; Guillén, M.D.; Blanco, C.G.: Comparative petrographic and geochemical study of the Puertollano oil shale kerogens. Org. Geochem. 24, 309–321 (1996)CrossRefGoogle Scholar
  13. 13.
    Wang, M.; Sherwood, N.; Li, Z.; Lu, S.; Wang, W.; Huang, A.: Shale oil occurring between salt intervals in the Dongpu Depression, Bohai Bay Basin. China Int. J. Coal Geol. 152, 100–112 (2015)CrossRefGoogle Scholar
  14. 14.
    Liang, S.; Elsworth, D.; Li, X.; Fu, X.; Yang, D.; Yao, Q.: Dynamic impacts on the survivability of shale gas wells piercing longwall panels. J. Nat. Gas. Sci. Eng. 26, 1130–1147 (2015)CrossRefGoogle Scholar
  15. 15.
    Liang, S.; Elsworth, D.; Li, X.; Yang, D.: Topographic influence on stability for gas wells penetrating longwall mining areas. Int. J. Coal Geol. 132, 23–36 (2014)CrossRefGoogle Scholar
  16. 16.
    Hou, P.; Gao, F.; Yang, Y.; Zhang, X.; Zhang, Z.: Effect of the layer orientation on mechanics and energy evolution characteristics of shales under uniaxial loading. Int. J. Min. Sci. Technol. 26, 857–862 (2016)CrossRefGoogle Scholar
  17. 17.
    Wang, J.; Xie, L.; Xie, H.; Ren, L.; He, B.; Li, C.: Effect of layer orientation on acoustic emission characteristics of anisotropic shale in Brazilian tests. J. Nat. Gas. Sci. Eng. 36, 1120–1129 (2016)CrossRefGoogle Scholar
  18. 18.
    Kang, Z.; Zhao, Y.; Meng, Q.; Dong, Y.: Micro-CT experimental research of oil shale thermal cracking laws. Chin. J. Geophys. 52, 842–848 (2009)CrossRefGoogle Scholar
  19. 19.
    Gai, R.; Jin, L.; Zhang, J.; Wang, J.; Hu, H.: Effect of inherent and additional pyrite on the pyrolysis behavior of oil shale. J. Anal. Appl. Pyrol. 105, 342–347 (2014)CrossRefGoogle Scholar
  20. 20.
    Liira, M.; Kirsimäe, K.; Kuusik, R.; Mõtlep, R.: Transformation of calcareous oil-shale circulating fluidized-bed combustion boiler ashes under wet conditions. Fuel 88, 712–718 (2009)CrossRefGoogle Scholar
  21. 21.
    Jiu, K.; Ding, W.; Huang, W.; Zhang, Y.; Zhao, S.; Hu, L.: Fractures of lacustrine shale reservoirs, the Zhanhua Depression in the Bohai Bay Basin, eastern China. Mar. Petrol. Geol. 48, 113–123 (2013)CrossRefGoogle Scholar
  22. 22.
    Klaver, J.; Desbois, G.; Littke, R.; Urai, J.L.: BIB-SEM pore characterization of mature and post mature Posidonia Shale samples from the Hils area. Ger. Int. J. Coal Geol. 158, 78–89 (2016)CrossRefGoogle Scholar
  23. 23.
    Ma, Y.; Zhong, N.; Cheng, L.; Pan, Z.; Dai, N.; Zhang, Y.: Pore structure of the graptolite-derived OM in the Longmaxi Shale, southeastern Upper Yangtze Region. China Mar. Petrol. Geol. 72, 1–11 (2016)CrossRefGoogle Scholar
  24. 24.
    Dai, F.; Chen, R.; Xia, K.: A semi-circular bend technique for determining dynamic fracture toughness. Exp. Mech. 50, 783–791 (2010)CrossRefGoogle Scholar
  25. 25.
    Jaeger, J.C.; Cook, N.G.; Zimmerman, R.: Fundamentals of Rock Mechanics. Wiley, New York (2009)Google Scholar
  26. 26.
    Duan, K.; Kwok, C.Y.; Pierce, M.: Discrete element method modeling of inherently anisotropic rocks under uniaxial compression loading. Int. J. Numer. Anal. Met. 40, 1150–1183 (2016)CrossRefGoogle Scholar
  27. 27.
    Min, K.; Rutqvist, J.; Tsang, C.; Jing, L.: Stress-dependent permeability of fractured rock masses: a numerical study. Int. J. Rock Mech. Min. 41, 1191–1210 (2004)CrossRefGoogle Scholar
  28. 28.
    Brideau, M.; Stead, D.: Controls on block toppling using a three-dimensional distinct element approach. Rock Mech. Rock Eng. 43, 241–260 (2010)CrossRefGoogle Scholar
  29. 29.
    Cho, N.; Martin, C.D.; Sego, D.C.: A clumped particle model for rock. Int. J. Rock Mech. Min. 44, 997–1010 (2007)CrossRefGoogle Scholar
  30. 30.
    Potyondy, D.O.; Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. 41, 1329–1364 (2004)CrossRefGoogle Scholar
  31. 31.
    Tang, C.A.; Liu, H.; Lee, P.K.K.; Tsui, Y.; Tham, L.G.: Numerical studies of the influence of microstructure on rock failure in uniaxial compression—part I: effct of heterogeneity. Int. J. Rock Mech. Min. 37, 555–569 (2000)CrossRefGoogle Scholar
  32. 32.
    Tang, C.A.; Liu, H.; Lee, P.K.K.; Tsui, Y.; Tham, L.G.: Numerical studies of the influence of microstructure on rock failure in uniaxial compression—part II: constraint, slenderness and size e€ ect. Int. J. Rock Mech. Min. 37, 571–583 (2000)CrossRefGoogle Scholar
  33. 33.
    Gao, F.Q.; Stead, D.: The application of a modified Voronoi logic to brittle fracture modelling at the laboratory and field scale. Int. J. Rock Mech. Min. 68, 1–14 (2014)CrossRefGoogle Scholar
  34. 34.
    Gao, F.; Stead, D.: Discrete element modelling of cutter roof failure in coal mine roadways. Int. J. Coal Geol. 116–117, 158–171 (2013)CrossRefGoogle Scholar
  35. 35.
    Gao, F.; Stead, D.; Coggan, J.: Evaluation of coal longwall caving characteristics using an innovative UDEC Trigon approach. Comput. Geotech. 55, 448–460 (2014)CrossRefGoogle Scholar
  36. 36.
    Hamidi, F.; Mortazavi, A.: A new three dimensional approach to numerically model hydraulic fracturing process. J. Petrol. Sci. Eng. 124, 451–467 (2014)CrossRefGoogle Scholar
  37. 37.
    Fan, X.; Kulatilake, P.H.S.W.; Chen, X.: Mechanical behavior of rock-like jointed blocks with multi-non-persistent joints under uniaxial loading: a particle mechanics approach. Eng. Geol. 190, 17–32 (2015)CrossRefGoogle Scholar
  38. 38.
    Bahaaddini, M.; Sharrock, G.; Hebblewhite, B.K.: Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression. Comput. Geotech. 49, 206–225 (2013)CrossRefGoogle Scholar
  39. 39.
    Yang, X.; Jing, H.; Tang, C.; Yang, S.: Effect of parallel joint interaction on mechanical behavior of jointed rock mass models. Int. J. Rock Mech. Min. 92, 40–53 (2017)CrossRefGoogle Scholar
  40. 40.
    Jia, P.; Zhu, W.; Zhang, S.: Effect of heterogeneity on occurrence of zonal disintegration around deep underground openings. Int. J. Min. Sci. Technol. 24, 859–864 (2014)CrossRefGoogle Scholar
  41. 41.
    Fakhimi, A.; Lanari, M.: DEM-SPH simulation of rock blasting. Comput. Geotech. 55, 158–164 (2014)CrossRefGoogle Scholar
  42. 42.
    International Society for Rock Mechanics: The complete ISRM suggested methods for rock characterization, testing and monitoring. In: Ulusay, R. (Ed.) International Society for Rock Mechanics, Commission on Testing Methods, pp. 1974–2006 (2007)Google Scholar
  43. 43.
    Kovari, K.; Tisa, A.; Einstein, H.H.; Franklin, J.A.: Suggested methods for determining the strength of rock materials in triaxial compression: revised version. Int. J. Rock Mech. Min. 20, 283–290 (1983)Google Scholar
  44. 44.
    Pierce, M.; Cundall, R.; Potyondy, D.; Ivars, D.M.: A synthetic rock mass model for jointed rock. In: Eberhardt, E.; Stead, D.; Morrison, T. (Eds.) Proceedings and Monographs in Engineering, Water and Earth Sciences, pp. 341–349 (2007)Google Scholar
  45. 45.
    Itasca Consulting Group: PFC\(^{2D}\) Manual, version 5.0. Minnesota, Minneapolis (2014)Google Scholar
  46. 46.
    Chong, Z.; Li, X.; Hou, P.; Wu, Y.; Zhang, J.; Chen, T.: Numerical investigation of bedding plane parameters of transversely isotropic shale. Rock Mech. Rock Eng. 20, 1183–1204 (2017)CrossRefGoogle Scholar
  47. 47.
    Ding, X.; Zhang, L.; Zhu, H.; Zhang, Q.: Effect of model scale and particle size distribution on PFC3D simulation results. Rock Mech. Rock Eng. 47, 2139–2156 (2014)CrossRefGoogle Scholar
  48. 48.
    Huang, H.: Discrete Element Modeling of Tool–Rock Interaction. University of Minnesota, Minneapolis (1999)Google Scholar
  49. 49.
    Koyama, T.; Jing, L.: Effects of model scale and particle size on micro-mechanical properties and failure processes of rocks—a particle mechanics approach. Eng. Anal. Bound. Elem. 31, 458–472 (2007)CrossRefzbMATHGoogle Scholar
  50. 50.
    Schoepfer, M.P.J.; Childs, C.; Walsh, JJ.: Two-dimensional distinct element modeling of the structure and growth of normal faults in multilayer sequences: 2. Impact of confining pressure and strength contrast on fault zone geometry and growth. J. Geophys. Solid Earth 112(B10) (2007).  https://doi.org/10.1029/2006JB004903
  51. 51.
    Yang, B.; Jiao, Y.; Lei, S.: A study on the effects of microparameters on macroproperties for specimens created by bonded particles. Eng. Comput. 23, 607–631 (2006)CrossRefzbMATHGoogle Scholar
  52. 52.
    Yoon, J.: Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int. J. Rock Mech. Min. 44, 871–889 (2007)CrossRefGoogle Scholar
  53. 53.
    Zhang, X.; Wong, L.N.Y.: Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach. Rock Mech. Rock Eng. 45, 711–737 (2011)Google Scholar
  54. 54.
    Yang, S.; Huang, Y.; Jing, H.; Liu, X.: Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression. Eng. Geol. 178, 28–48 (2014)CrossRefGoogle Scholar
  55. 55.
    Eberhardt, E.; Stead, D.; Stimpson, B.; Read, R.S.: Identifying crack initiation and propagation thresholds in brittle rock. Can. Geotech. J. 35, 222–233 (1998)CrossRefGoogle Scholar
  56. 56.
    Diederichs, M.S.: Instability of Hard Rockmasses: The Role of Tensile Damage and Relaxation. National Library of Canada (2001)Google Scholar
  57. 57.
    Hofmann, H.; Babadagli, T.; Yoon, J.S.; Zang, A.; Zimmermann, G.: A grain based modeling study of mineralogical factors affecting strength, elastic behavior and micro fracture development during compression tests in granites. Eng. Fract. Mech. 147, 261–275 (2015)CrossRefGoogle Scholar
  58. 58.
    Scholtès, L.; Donzé, F.: A DEM model for soft and hard rocks: role of grain interlocking on strength. J. Mech. Phys. Solids 61, 352–369 (2013)Google Scholar
  59. 59.
    Schöpfer, M.P.J.; Abe, S.; Childs, C.; Walsh, J.J.: The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: insights from dem modelling. Int. J. Rock Mech. Min. Sci. 46, 250–261 (2009)CrossRefGoogle Scholar
  60. 60.
    Wang, Y.; Tonon, F.: Modeling lac du bonnet granite using a discrete element model. Int. J. Rock Mech. Min. Sci. 47, 1124–1135 (2009)CrossRefGoogle Scholar
  61. 61.
    Wu, S.; Xu, X.: A study of three intrinsic problems of the classic discrete element method using flat-joint model. Rock Mech. Rock Eng. 49, 1813–1830 (2016)CrossRefGoogle Scholar
  62. 62.
    Mahmutoglu, Y.: Mechanical behaviour of cyclically heated fine grained rock. Rock Mech. Rock Eng. 31, 169–179 (1998)CrossRefGoogle Scholar
  63. 63.
    Yang, T.; Wang, P.; Xu, T.; Yu, Q.; Zhang, P.; Shi, W.: Anisotropic characteristics of jointed rock mass: a case study at shirengou iron ore mine in china. Tunn. Undergr. Space Technol. Inc. Trenchless Technol. Res. 48, 129–139 (2015)CrossRefGoogle Scholar
  64. 64.
    Gironacci, E.; Nezhad, M.M.; Rezania, M.; Lancioni, G.: A non-local probabilistic method for modeling of crack propagation. Int. J. Mech. Sci. 144, 897–908 (2018).  https://doi.org/10.1016/j.ijmecsci.2017.11.015 CrossRefGoogle Scholar
  65. 65.
    Nezhad, M.M.; Fisher, Q.J.; Gironacci, E.; Rezania, M.: Experimental study and numerical modeling of fracture propagation in shale rocks during brazilian disk test. Rock Mech. Rock Eng. 11, 1–21 (2018)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Coal Resources and Safe MiningChina University of Mining and TechnologyXuzhouChina
  2. 2.Faculty of Engineering and Information SciencesUniversity of WollongongWollongongAustralia
  3. 3.State Key Laboratory for Geomechanics and Deep Underground EngineeringChina University of Mining and TechnologyXuzhouChina

Personalised recommendations