Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1353–1363 | Cite as

A Comparative Study on the Effect of CNT or Alumina Nanoparticles on the Tensile Properties of Epoxy Nanocomposites

  • Şakir Yazman
  • Ahmet SamancıEmail author
Research Article - Mechanical Engineering
  • 38 Downloads

Abstract

In this paper, the mechanical properties of the carbon nanotube (CNT) or alumina \((\hbox {Al}_{2}\hbox {O}_{3})\) nanoparticles (NPs)-modified epoxy composites were investigated experimentally. Composite dog-bone tensile specimens were prepared and tested according to ASTM D638-14 standards with CNT or \(\hbox {Al}_{2}\hbox {O}_{3}\) nanoparticle contents of neat, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 and 2.0% of the total resin weight. In order to compare the effect of nanoparticle type and content on the mechanical properties, tensile stress–strain curves were drawn for each parameter. Also, the ultimate tensile strength (UTS), Young’s modulus and toughness values were obtained and compared. Considerable improvements of the mechanical properties were observed by adding NPs. The results indicated that the UTS, Young’s modulus, and toughness values reached a maximum with an increment of 27.6, 18.7 and 187.9%, respectively, at \(\hbox {Al}_{2}\hbox {O}_{3}\) nanoparticle content of 1.0 wt%, according to neat epoxy. Due to lower cost and good mechanical properties of the \(\hbox {Al}_{2}\hbox {O}_{3}\) nanoparticle-modified composites, the \(\hbox {Al}_{2}\hbox {O}_{3}\) nanoparticle can be used as a reinforced particle for epoxy composites. On the other hand, it was observed that the CNTs were not as effective as \(\hbox {Al}_{2}\hbox {O}_{3}\) nanoparticles.

Keywords

Nanocomposites (NCs) Tensile properties CNT \(\hbox {Al}_{2}\hbox {O}_{3}\) nanoparticles (NPs) 

Abbreviation

\(\hbox {Al}_{2}\hbox {O}_{3}\)

Alumina

CNT

Carbon nanotube

SWCNT

Single-wall CNT

DWCNT

Dual-wall CNT

MWCNT

Multi-wall CNT

NPs

Nanoparticles

NCs

Nanocomposites

UTS

Ultimate tensile strength

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Loureiro, A.; Da Silva, L.F.; Sato, C.; Figueiredo, M.: Comparison of the mechanical behaviour between stiff and flexible adhesive joints for the automotive industry. J. Adhes. 86(7), 765–87 (2010)CrossRefGoogle Scholar
  2. 2.
    Agcakoca, E.; Aktas, M.: The impact of the HMCFRP ratio on the strengthening of steel composite I-beams. Math. Probl. Eng. 2012, 183906 (2012).  https://doi.org/10.1155/2012/183906 CrossRefGoogle Scholar
  3. 3.
    Aktas, M.; Sumer, Y.; Agcakoca, E.; Yaman, Z.: Nonlinear finite element modeling of composite bridge girders strengthened with HM-CFRP laminates. Arab. J. Sci. Eng. 41(10), 3783–91 (2016)CrossRefGoogle Scholar
  4. 4.
    Kinloch, A.; Shaw, S.; Tod, D.; Hunston, D.: Deformation and fracture behaviour of a rubber-toughened epoxy: 1. Microstructure and fracture studies. Polymer 24(10), 1341–54 (1983)CrossRefGoogle Scholar
  5. 5.
    Pearson, R.A.; Yee, A.F.: Toughening mechanisms in elastomer-modified epoxies. J. Mater. Sci. 21(7), 2475–88 (1986)CrossRefGoogle Scholar
  6. 6.
    Bucknall, C.B.; Partridge, I.K.: Phase separation in epoxy resins containing polyethersulphone. Polymer 24(5), 639–44 (1983)CrossRefGoogle Scholar
  7. 7.
    Johnsen, B.; Kinloch, A.; Taylor, A.: Toughness of syndiotactic polystyrene/epoxy polymer blends: microstructure and toughening mechanisms. Polymer 46(18), 7352–69 (2005)CrossRefGoogle Scholar
  8. 8.
    Broutman, L.; Sahu, S.: The effect of interfacial bonding on the toughness of glass filled polymers. Mater. Sci. Eng. 8(2), 98–107 (1971)CrossRefGoogle Scholar
  9. 9.
    Kinloch, A.; Taylor, A.: The mechanical properties and fracture behaviour of epoxy–inorganic micro- and nano-composites. J. Mater. Sci. 41(11), 3271–97 (2006)CrossRefGoogle Scholar
  10. 10.
    Gojny, F.H.; Wichmann, M.H.; Fiedler, B.; Schulte, K.: Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites: a comparative study. Compos. Sci. Technol. 65(15), 2300–13 (2005)CrossRefGoogle Scholar
  11. 11.
    Chen, X.; Wang, J.; Lin, M.; Zhong, W.; Feng, T.; Chen, X.: Mechanical and thermal properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes. Mater. Sci. Eng. A 492(1), 236–42 (2008)CrossRefGoogle Scholar
  12. 12.
    Ayatollahi, M.; Shadlou, S.; Shokrieh, M.: Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions. Mater. Des. 32(4), 2115–24 (2011)CrossRefGoogle Scholar
  13. 13.
    Tang, L.; Zhang, H.; Han, J.; Wu, X.; Zhang, Z.: Fracture mechanisms of epoxy filled with ozone functionalized multi-wall carbon nanotubes. Compos. Sci. Technol. 72(1), 7–13 (2011)CrossRefGoogle Scholar
  14. 14.
    Zhao, H.; Li, R.K.: Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites. Compos. Part A Appl. Sci. Manuf. 39(4), 602–11 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ghadami, F.; Dadfar, M.; Kazazi, M.: Hot-cured epoxy-nanoparticulate-filled nanocomposites: fracture toughness behavior. Eng. Fract. Mech. 162, 193–200 (2016)CrossRefGoogle Scholar
  16. 16.
    Zhao, S.; Schadler, L.S.; Duncan, R.; Hillborg, H.; Auletta, T.: Mechanisms leading to improved mechanical performance in nanoscale alumina filled epoxy. Compos. Sci. Technol. 68(14), 2965–75 (2008)CrossRefGoogle Scholar
  17. 17.
    Guo, Z.; Pereira, T.; Choi, O.; Wang, Y.; Hahn, H.T.: Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. J. Mater. Chem. 16(27), 2800–8 (2006)CrossRefGoogle Scholar
  18. 18.
    ASTM D638-14: Standard Test Method for Tensile Properties of Plastics. ASTM International, West Conshohocken, PA (2014). www.astm.org
  19. 19.
    Sun, L.; Warren, G.; O’reilly, J.; Everett, W.; Lee, S.; Davis, D.: Mechanical properties of surface-functionalized SWCNT/epoxy composites. Carbon 46(2), 320–8 (2008)CrossRefGoogle Scholar
  20. 20.
    Hernández-Pérez, A.; Avilés, F.; May-Pat, A.; Valadez-González, A.; Herrera-Franco, P.; Bartolo-Pérez, P.: Effective properties of multiwalled carbon nanotube/epoxy composites using two different tubes. Compos. Sci. Technol. 68(6), 1422–31 (2008)CrossRefGoogle Scholar
  21. 21.
    Konnola, R.; Joseph, K.: Effect of side-wall functionalisation of multi-walled carbon nanotubes on the thermo-mechanical properties of epoxy composites. RSC Adv. 6(28), 23887–99 (2016)CrossRefGoogle Scholar
  22. 22.
    Gkikas, G.; Barkoula, N.-M.; Paipetis, A.: Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes–reinforced epoxy. Compos. Part B Eng. 43(6), 2697–705 (2012)CrossRefGoogle Scholar
  23. 23.
    Tajammul, H.M.; Gouda, P.S.; Siddhalingeshwar, I.; Kodancha, K.G.: Effect of alcoholic treated MWCNT on tensile behavior of epoxy composite. Int. J. Eng. Sci. Technol. 8(1), 57–63 (2016)CrossRefGoogle Scholar
  24. 24.
    Ervina, J.; Mariatti, M.; Hamdan, S.: Mechanical, electrical and thermal properties of multi-walled carbon nanotubes/epoxy composites: effect of post-processing techniques and filler loading. Polym. Bull. 2016, 1–21 (2016)Google Scholar
  25. 25.
    Zabet, M.; Moradian, S.; Ranjbar, Z.; Zanganeh, N.: Effect of carbon nanotubes on electrical and mechanical properties of multiwalled carbon nanotubes/epoxy coatings. J. Coat. Technol. Res. 13(1), 191–200 (2016)CrossRefGoogle Scholar
  26. 26.
    Al-Turaif, H.A.: Effect of nano TiO\(_ 2\) particle size on mechanical properties of cured epoxy resin. Prog. Org. Coat. 69(3), 241–6 (2010)CrossRefGoogle Scholar
  27. 27.
    Atif, R.; Shyha, I.; Inam, F.: The degradation of mechanical properties due to stress concentration caused by retained acetone in epoxy nanocomposites. RSC Adv. 6(41), 34188–97 (2016)CrossRefGoogle Scholar
  28. 28.
    Atif, R.; Shyha, I.; Inam, F.: Mechanical, thermal, and electrical properties of graphene–epoxy nanocomposites: a review. Polymers 8(8), 281 (2016)CrossRefGoogle Scholar
  29. 29.
    Pinto, D.; Bernardo, L.; Amaro, A.; Lopes, S.: Mechanical properties of epoxy nanocomposites using titanium dioxide as reinforcement: a review. Constr. Build. Mater. 95, 506–24 (2015)CrossRefGoogle Scholar
  30. 30.
    Sharmila, T.B.; Antony, J.V.; Jayakrishnan, M.; Beegum, P.S.; Thachil, E.T.: Mechanical, thermal and dielectric properties of hybrid composites of epoxy and reduced graphene oxide/iron oxide. Mater. Des. 90, 66–75 (2016)CrossRefGoogle Scholar
  31. 31.
    Chen, C.-H.; Jian, J.-Y.; Yen, F.-S.: Preparation and characterization of epoxy/\(\gamma \)-aluminum oxide nanocomposites. Compos. Part A Appl. Sci. Manuf. 40(4), 463–8 (2009)CrossRefGoogle Scholar
  32. 32.
    Jin, F.-L.; Park, S.-J.: Thermal properties of epoxy resin/filler hybrid composites. Polym. Degrad. Stab. 97(11), 2148–53 (2012)CrossRefGoogle Scholar
  33. 33.
    Zakaria, M.R.; Akil, H.M.; Kudus, M.H.A.; Saleh, S.S.M.: Enhancement of tensile and thermal properties of epoxy nanocomposites through chemical hybridization of carbon nanotubes and alumina. Compos. Part A Appl. Sci. Manuf. 66, 109–16 (2014)CrossRefGoogle Scholar
  34. 34.
    Bain, E.D.; Mrozek, R.A.; Lenhart, J.L.: Role of weak particle–matrix interfacial adhesion in deformation and fracture mechanisms of rigid particulate-filled poly (methyl methacrylate). Mech. Mater. 104, 1–12 (2017)CrossRefGoogle Scholar
  35. 35.
    McGrath, L.M.; Parnas, R.S.; King, S.H.; Schroeder, J.L.; Fischer, D.A.; Lenhart, J.L.: Investigation of the thermal, mechanical, and fracture properties of alumina–epoxy composites. Polymer 49(4), 999–1014 (2008)CrossRefGoogle Scholar
  36. 36.
    Lange, F.: The interaction of a crack front with a second-phase dispersion. Philos. Mag. 22(179), 0983–92 (1970)CrossRefGoogle Scholar
  37. 37.
    Demirci, M.T.; Tarakçıoğlu, N.; Avcı, A.; Akdemir, A.; Demirci, İ.: Fracture toughness (Mode I) characterization of SiO\(_2\) nanoparticle filled basalt/epoxy filament wound composite ring with split-disk test method. Compos. Part B Eng. 119, 114–24 (2017)CrossRefGoogle Scholar
  38. 38.
    Goyat, M.; Suresh, S.; Bahl, S.; Halder, S.; Ghosh, P.: Thermomechanical response and toughening mechanisms of a carbon nano bead reinforced epoxy composite. Mater. Chem. Phys. 166, 144–52 (2015)CrossRefGoogle Scholar
  39. 39.
    Greenhalgh, E.: Failure Analysis and Fractography of Polymer Composites. Elsevier, New York (2009)CrossRefGoogle Scholar
  40. 40.
    Subhani, T.; Latif, M.; Ahmad, I.; Rakha, S.A.; Ali, N.; Khurram, A.A.: Mechanical performance of epoxy matrix hybrid nanocomposites containing carbon nanotubes and nanodiamonds. Mater. Des. 87, 436–44 (2015)CrossRefGoogle Scholar
  41. 41.
    Shtein, M.; Nadiv, R.; Lachman, N.; Wagner, H.D.; Regev, O.: Fracture behavior of nanotube–polymer composites: insights on surface roughness and failure mechanism. Compos. Sci. Technol. 87, 157–63 (2013)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Mechanical DepartmentIlgın Technical Science College of Selcuk UniversityKonyaTurkey
  2. 2.Faculty of Aeronautical and Space SciencesNecmettin Erbakan UniversityKonyaTurkey

Personalised recommendations