Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 2369–2377 | Cite as

Internal Multimodel Control for Nonlinear Overactuated Systems

  • Nahla TouatiEmail author
  • Imen Saidi
  • Ahmed Dhahri
  • Dhaou Soudani
Research Article - Electrical Engineering


This paper deals with the synthesis of a novel internal multimodel control designed for nonlinear overactuated systems. The multimodel approach is proposed to deal with system nonlinearity. A base of linear models is considered to describe the nonlinear system in the whole operating domain and then squared by adding virtual outputs. An internal model controller, obtained by a specific inversion method, is proposed for each model of the base. Thus, the global system control parameters are deduced through fusion of the elementary controller parameters by means of two techniques: commutation or residual approach. The case of three inputs/two outputs system is studied to illustrate the ability of both techniques to satisfy a tolerance interval for position error values, overshoot, settling time specifications and robustness requirement.


Internal multimodel control Nonlinear overactuated systems Multimodel approach Linear models Virtual outputs Internal model controller Commutation or residual approach 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Johannes, T.; Johansen, T.: Adaptive control allocation. Automatica 44(11), 2754–2765 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    John, A.M.; Petersen, M.B.: Constrained quadratic programming techniques for control allocation. IEEE Trans. Control Syst. Technol. 14(1), 91–98 (2006)CrossRefGoogle Scholar
  3. 3.
    Van Oort, E.R.; Sonneveldt, L.; Chut Q. P.; Mulder, J. A.: Adaptive optimizing nonlinear control design for an over-actuated aircraft model. In: Guidance, Navigation, and Control Conference. Portland, Oregon (2011)Google Scholar
  4. 4.
    Brad, S.; Tore, H.: Optimal control allocation in vehicle dynamics control for rollover mitigation. In: Proceedings of the American Control Conference, pp. 3231–3236. Seattle, USA (2008)Google Scholar
  5. 5.
    Chong, F.; Neng-gen, D.; Yong-ling, D.; Guo-yan, X.; Feng, G.: Control allocation algorithm for over-actuated electric vehicles. J. Central South Univ. 21(10), 3705–3712 (2014)CrossRefGoogle Scholar
  6. 6.
    Sigthorsson, D.O.; Serrani, A.; Bolender, M.A.; Doman, D.B.: LPV control design for over-actuated hypersonic vehicles models. In: Guidance, Navigation, and Control Conference. Chicago. Illinois (2009)Google Scholar
  7. 7.
    Aloui, S.; Pagés, O.; El Hajjaji, A.; Chaari, A.; Koubaa, Y.: Robust fuzzy tracking control for a class of perturbed non square nonlinear systems. In: American Control Conference Marriott Waterfront. Baltimore. MD. USA (2010)Google Scholar
  8. 8.
    Kolavennu, S.; Palank, S.; Cockburn, J.C.: Nonlinear control of nonsquare multivariable systems. Chem. Eng. Sci. 56, 2103–2110 (2001)CrossRefGoogle Scholar
  9. 9.
    Doyle, F.J.; Allgower, F.; Oliveria, S.; Gilles, E.; Morari, M.: On nonlinear systems with poorly behaved zero dynamics. In: Proceedings of American Control Conference, pp. 2571–2575 (1992)Google Scholar
  10. 10.
    Richard, B.; McLain, J.; Kurtz, M.; Henson, A.: Habituating control for nonsquare nonlinear processes. Ind. Eng. Chem. Res. 35, 4067–4077 (1996)CrossRefGoogle Scholar
  11. 11.
    Economou, C.G.; Morari, M.; Palsson, B.O.: Internal model control 5. Extension to nonlinear systems. Ind. Eng. Chem. Process Des. Dev. 25, 403–409 (1986)CrossRefGoogle Scholar
  12. 12.
    Garcia, C.G.; Morari, M.: Internal model control. 1. A unifying review and some results. Ind. Eng. Chem. Process Des. Dev. 21, 403–411 (1982)CrossRefGoogle Scholar
  13. 13.
    Lorimier, L.; Borne, P.: Local observer-based multi-control and online validity estimation for multiple-model control of complex systems. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 822–827 (2003)Google Scholar
  14. 14.
    Sadati, N.; Talasaz, A.: Robust fuzzy multimodel control using variable structure system. In: IEEE Conference on Cybernetics and Intelligent Systems, vol. 1, pp. 497–502 (2004)Google Scholar
  15. 15.
    Quan, L.; Zhang, H.: Max–Max based internal model control method for multivariable system with time delay. J. Appl. Mech. Mater. 236–237, 356–359 (2012)CrossRefGoogle Scholar
  16. 16.
    Quan, L.; Zhang, H.; Yang, Y.: A novel internal model control method for non-square system. Appl. Mech. Mater. 238, 66–70 (2012)CrossRefGoogle Scholar
  17. 17.
    Rao, A.S.; Chidambaram, M.: Smith delay compensator for multivariable non-square systems with multiple time delays. Int. J. Comput. Chem. Eng. 30, 1243–1255 (2006)CrossRefGoogle Scholar
  18. 18.
    Shen, Y.L.; Sun, Y.X.; Xu, W.: Centralized PI/PID controller design for multivariable processes. Ind. Eng. Chem. Res. 53(25), 10439–10447 (2014)CrossRefGoogle Scholar
  19. 19.
    Patwardhan, S.C.; Madhavan, K.P.: Nonlinear internal model control using quadratic perturbation models. Comput. Chem. Eng. 22, 587–601 (1998)CrossRefGoogle Scholar
  20. 20.
    Kambhmpati, C.; Craddock, R.; Tham, M.; Warwick, K.: Internal model control of nonlinear systems through the inversion of recurrent neural networks. IEEE 2, 1361–1366 (1998)Google Scholar
  21. 21.
    Reeves, D.E.; Arkun, Y.: Interaction measures for nonsquare decentralized control structures. A.I.Ch.E. J. 35(4), 603 (1989)CrossRefGoogle Scholar
  22. 22.
    Dhahri, A.; Saidi, I.; Soudani, D.: Internal model control for multivariable over-actuated systems with multiple time delay. In: 4th International Conference on control Engineering & Information Technology, pp. 623–626, Hammamet, Tunisia (2016)Google Scholar
  23. 23.
    Karmani, N.T.; Soudani, D.; Naceur, M.; Benrejeb, M.: On an internal multimodel control for nonlinear multivariable systems–a comparative study. Int. J. Adv. Comput. Sci. Appl. IJACSA 4(7), 66–71 (2013)Google Scholar
  24. 24.
    Fu, Y.; Chai, T.: Nonlinear multivariable adaptive control using multiple models and neural networks. Automatica 43, 1101–1110 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Elfelly, N.; Dieulot, J.Y.; Benrejeb, M.; Borne, P.: A multimodel approach of complex systems identification and control using classification algorithms. Int. J. Comput. Commun. Control 7(4), 645–660 (2012)CrossRefGoogle Scholar
  26. 26.
    Saxena, S.; Hote, Y.V.: Simple approach to design PID controller via internal model control. Arab. J. Sci. Eng. 41, 3473–3489 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Benrejeb, M.; Naceur, M.; Soudani, D.: On an internal model controller based on the use of a specific inverse model. In: ACIDCA, pp. 623–626. Tozeur (2005)Google Scholar
  28. 28.
    Quan, L.; Zhang, H.; Yang, Y.: A novel internal model control method for non-square system. Appl. Mech. Mater. 238, 66–70 (2012)CrossRefGoogle Scholar
  29. 29.
    Dhahri, A.; Saidi, I.; Soudani, D.: A new internal model control method for MIMO over-actuated systems. Int. J. Adv. Comput. Sci. Appl. 7(10), 304–309 (2016)Google Scholar
  30. 30.
    Chang, J.W.; Yu, C.C.: The relative gain for non-square multivariable systems. Chem. Eng. Sci. 5, 1309–1323 (1990)CrossRefGoogle Scholar
  31. 31.
    Touati, N.; Soudani, D.; Naceur, M.; Benrejeb, M.: On the internal model control of multivariable linear system. In: International Conference on Sciences and Techniques of Automatic Control and Computer Engineering, Sousse (2011)Google Scholar
  32. 32.
    Rodrigues, M.; Theilliol, D.; Sauter, D.: Design of an active fault tolerant control and polytopic unknown input observer for systems described by a multi-model representation. In: Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain (2005)Google Scholar
  33. 33.
    Hamdi, H.; Rodrigues, M.; Mechmeche, C.; Theilliol, D.; Braiek, N.B.: State estimation for polytopic LPV descriptor systems: application to fault diagnosis. In: Proceedings of the 7th IFAC Symposium on Fault Detection. Supervision and Safety of Technical Processes Barcelona, Spain, pp: 438–443 (2009)Google Scholar
  34. 34.
    Zongxuan, S.: Disturbance rejection for nonlinear systems. In: Proceedings of the American Control Conference Anchorage (2002)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.LA.R.A, Automatic Research Laboratory of National Engineering School of Tunis (ENIT)TunisTunisia

Personalised recommendations