Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 5, pp 4681–4691 | Cite as

Prediction of Bearing Capacity of Stone Columns Placed in Soft Clay Using SVR Model

  • Manita DasEmail author
  • Ashim Kanti Dey
Research Article - Civil Engineering
  • 37 Downloads

Abstract

It is well known that the construction on soft clayey soil is always a great challenge to the geotechnical engineers. The soft clay poses high compressibility and low bearing capacity. It is a common practice to improve the properties of the soft clay prior to any construction on it. In this respect, ground improvement by stone columns is a usual choice of the geotechnical engineers. The stone columns increase the bearing capacity and reduce the settlement of the soft clay. Many theories are developed to determine the bearing capacity of the soft soil reinforced with stone columns. However, most of the theories are site-specific and do not show a very good match with the field observations. In this study, a large numbers of data were collected from previously reported studies from various parts of the globe and an empirical formula based on support vector regression (SVR) technique for the determination of the ultimate bearing capacity of the stone columns is achieved. Two different techniques, namely tenfold cross-validation (\({q}_{\mathrm{TFCV}}\)) and non-cross-validation (\({q}_{\mathrm{NCV}}\)), are presented for the construction of the SVR model. It is observed that the SVR method gives a better prediction than artificial neural network method. Laboratory experiments were conducted to validate the SVR-ERBF empirical approach. The formula is also validated with two field observations by two other investigators.

Keywords

Support vector regression Artificial neural network Bearing capacity of stone columns Soft clay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gucuyen, E.; Erdem, R.T.; Gokku, U.: Irregular wave effects on dynamic behavior of piles. Arab J. Sci. Eng. 38, 1047–1057 (2013).  https://doi.org/10.1007/s13369-012-0428-6 CrossRefGoogle Scholar
  2. 2.
    Borthakur, N.; Dey, A.K.: Experimental investigation on load carrying capacity of micropiles in soft clay. Arab J. Sci. Eng. (2017).  https://doi.org/10.1007/s13369-017-2894-3
  3. 3.
    Ambily., A.P.; Gandhi, S.R.: Experimental and theoretical evaluation of stone column in soft clay (2004) ICGGE.Google Scholar
  4. 4.
    Ambily, A.P.; Gandhi, S.R.: Behavior of stone columns based on experimental and fem analysis. J. Geotech. Geoenviron. Eng. ASCE 133, 405–415 (2007).  https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(405) CrossRefGoogle Scholar
  5. 5.
    Afshar, J.N.; Ghazavi, M.: Experimental studies on bearing capacity of geosynthetic reinforced stone columns. Arab J. Sci. Eng. 39, 1559–1571 (2014).  https://doi.org/10.1007/s13369-013-0709-8 CrossRefGoogle Scholar
  6. 6.
    Castro, J.: An analytical solution for the settlement of stone columns beneath rigid footings. Acta Geotech. (2014).  https://doi.org/10.1007/s11440-014-0358-4
  7. 7.
    Mohanty, P.; Samanta, M.: Experimental and numerical studies on response of the stone column in layered soil. Int. J. Geosynth. Ground Eng. 1, 27 (2015).  https://doi.org/10.1007/s40891-015-0029-z CrossRefGoogle Scholar
  8. 8.
    Goh, A.T.C.; Kulhawy, F.H.; Chua, C.G.: Bayesian neural network analysis of undrained side resistance of drilled shafts. J. Geotech. Geoenviron. Eng. ASCE 131(1), 84–93 (2005)CrossRefGoogle Scholar
  9. 9.
    Lee, J.S.; Pande, G.N.: Analysis of stone-column reinforced Foundations. Int. J. Numer. Anal. Meth. Geomech. 22, 1001–1020 (1998)CrossRefzbMATHGoogle Scholar
  10. 10.
    Shahu, J.T.; Reddy, Y.R.: Clayey soil reinforced with stone column group: model tests and analyses. J. Geotech. Geoenviron. Eng., ASCE 137(12) (2011).  https://doi.org/10.1061/(ASCE)GT.1943-5606.0000552
  11. 11.
    Niroumand, H.; Kassim, K.A.; Yah, C.S.: Soil improvement by reinforced stone columns based on experimental work. EJGE 16 (2011)Google Scholar
  12. 12.
    Nassaji, F.; Asakereh, A.: Effect of granular bed on behaviour of stone column improved ground. Int. J. Sci. Eng. Investig. 2(23) (2013)Google Scholar
  13. 13.
    Afshar J.N.; Ghazavi, M.: A simple analytical method for calculation of bearing capacity of stone column. Int. J. Civil Eng. 12(1) (2014)Google Scholar
  14. 14.
    Etezad, M.; Hanna, A.M.; Ayadat, T.: Bearing capacity of a group of stone columns in soft soil. Int. J. Geomech. ASCE, (2015)Google Scholar
  15. 15.
    Rentschler, T.; Schmidt, K.; Kuhn, P.; Scholten, T.: Three-dimensional mapping of soil organic carbon (SOC) based on multi-scale digital terrain analysis and data mining in Jiangxi Province, PR China. (202), Wageningen, 26 June–1 (2017)Google Scholar
  16. 16.
    Cheng, M.Y.; Wu, Y.W.: Dynamic prediction of project success using evolutionary support vector machine inference model. In: Proceedings of the 25th International Symposium on Automation and Robotics in Construction, vol. 203, p. 2005 (2008)Google Scholar
  17. 17.
    Olyaie, E.; Heydari, M.; Banejad, H.; Chau, K.W.: A laboratory investigation on the potential of computational intelligence approaches to estimate the discharge coefficient of piano key weir.Google Scholar
  18. 18.
    Li, X.; Miao, J.: Life Prediction Method of Lithium-Ion Battery Based on Grey Support Vector Machines. World Academy of Science, Engineering and Technology, International Journal of Medical and Health Sciences, 9(5), (2015)Google Scholar
  19. 19.
    Liu, H.X.; Zhang, R.S.; Yao, X.J.; Liu, M.C.; Hu, Z.D.; Fan, B.T.: Prediction of the isoelectric point of an amino acid based on GA-PLS and SVMs. J. Chem. Inf. Comput. Sci. 44(1), 161–167 (2004)CrossRefGoogle Scholar
  20. 20.
    Kostic, S.; Vasovic, D.: Prediction model for compressive strength of basic concrete mixture using artificial neural networks. Neural Comput. Appl. 26, 1005–1024 (2015).  https://doi.org/10.1007/s00521-014-1763-1 CrossRefGoogle Scholar
  21. 21.
    Samui, P.: Support vector machine applied to settlement of shallow foundations on cohesionless soils. Comput. Geotechn. 35, 419–427 (2008)CrossRefzbMATHGoogle Scholar
  22. 22.
    Chik, Z.; Aljanabi, Q.A.: Intelligent prediction of settlement ratio for soft clay with stone columns using embankment improvement techniques. Neural Comput. Appl. 25, 73–82 (2014).  https://doi.org/10.1007/s00521-013-1449-0 CrossRefGoogle Scholar
  23. 23.
    Chik, Z.; Aljanabi, Q.A.; Kasa, A.; Taha, M.R.: Tenfold cross validation artificial neural network modeling of the settlement behavior of a stone column under a highway embankment. Arab J. Geosci. 7, 4877–4887 (2014).  https://doi.org/10.1007/s12517-013-1128-6 CrossRefGoogle Scholar
  24. 24.
    Vapnik, V.N.; Golowich, S.E.; Smola, A.: Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing, Advances in Neural Information Processing Systems. Morgan Kaufmann, San Mateo (1996)Google Scholar
  25. 25.
    IS 15284-1: Design and construction for ground improvement-Guidelines. Part-1: Stone columns [CED 43: Soil and foundation engineering], ICS 93.020. (2003)Google Scholar
  26. 26.
    Gunn, S.R.: Support vector machines for classification and regression. Tech Rep. University of Southampton. (2001) http://www.isis.ecs.soton.ac.uk/isystems/kernel/ svm.zip,
  27. 27.
    Mozumder, et al.: Support vector regression approach to predict the strength of FRP confined concrete. Arab J. Sci. Eng. (2016)  https://doi.org/10.1007/s13369-016-2340-y
  28. 28.
    Leung, : Empirical approach for determining ultimate FRP strain in FRP-strengthened concrete beams. J. Compos. Constr. 10(2), 125–138 (2006).  https://doi.org/10.1061/(ASCE)1090-0268(2006)10:2(125) CrossRefGoogle Scholar
  29. 29.
    Mozumder, R.A.; Laskar, A.I.; Hussain, M.: Empirical approach for strength prediction of geopolymer stabilized clayey soil using support vector machines. Constr. Build. Mater. 132, 412–424 (2017)CrossRefGoogle Scholar
  30. 30.
    Bhosle, S.; Vaishampayan, V.V.: Ground Improvement Using Vibro Stone Columns Capacity Of Stone Column. Guntur, INDIA (2009). IGC 2009Google Scholar
  31. 31.
  32. 32.
    Poorooshasb, H.B.; Meyerhof, G.: Analysis of behavior of stone columns and lime columns. Comput. Geotech. 20(1), 47–70 (1997)CrossRefGoogle Scholar
  33. 33.
    Andreou, P.; Papadopoulos, V.: Factors affecting the settlement estimation of stone column reinforced soils. Geotech. Geol. Eng. 32(23), 1175–1185 (2014).  https://doi.org/10.1007/s10706-014-9788-x CrossRefGoogle Scholar
  34. 34.
    Etezad, M.: Geotechnical performance of group of stone columns. Phd Thesis (2007)Google Scholar
  35. 35.
    Murugesan, S.; Rajagopal, K.: Performance of encased stone columns and design guidelines for construction on soft clay soils. In: Proceedings of the 4th Asian Regional Conference on Geosynthetics, June 17–20, Shanghai, China (2008)Google Scholar
  36. 36.
    Malarvizhi, S.N.; Ilampurthi, K.: Comparative study on the behavior of encased stone column and conventional stone column. Soils found. Jpn. Geotechn. Soc. 47(5), 873–885 (2007)CrossRefGoogle Scholar
  37. 37.
    Golait, Y.S.; Satyanarayana, V.; Raju, S.S.V.: Concept of Under Reamed Cemented Stone Columns for Soft Clay Ground Improvement. Guntur, INDIA (2009). IGC 2009Google Scholar
  38. 38.
    Zhang, L.; Zhao, M.; Shi, C.; Zhao, H.: Settlement calculation of composite foundation reinforced with stone columns. Int. J. Geomech. 13(3), 248–256 (2013).  https://doi.org/10.1061/(ASCE)GM.1943-5622.0000212 CrossRefGoogle Scholar
  39. 39.
    Hassen, G.; Buhan, P.D.; Abdelkrim, M.: Finite element implementation of a homogenized constitutive law for stone column-reinforced foundation soils, with application to the design of structures. Comput. Geotech. 2010(37), 40–49 (2010)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Civil Engineering DepartmentN.I.T. SILCHARSilcharIndia

Personalised recommendations