Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 1713–1735 | Cite as

T-Type Multilevel Converter Topologies: A Comprehensive Review

  • A. Salem
  • M. A. AbidoEmail author
Review Article - Electrical Engineering
  • 112 Downloads

Abstract

Renewable energy systems integration prefers DC–AC converters of high efficiency, low harmonic injection and small size. Multilevel converter (MLC) is preferred compared to two-level converter thanks to its low harmonic injection, even at low switching frequency values, and accepting high power as well as voltage levels. Among reduced switching devices count MLCs is the T-type topology. This article introduces a review of the different advanced topologies of T-type MLC in comparison with the conventional neutral point clamped converters. The operation of each topology, the design consideration and the performance in low-voltage applications such as AC drive systems, grid-tie integration of renewable energy and power train drive applications are discussed. In addition, the design considerations using enhanced semiconductor switches are elaborated. Different studies regarding MLCs—like common-mode voltage elimination or reduction, open-switch fault diagnosis, open- as well as short-circuit fault tolerance, and DC link capacitor voltage balancing for T-type topologies—are illustrated. Finally, recommendations for future work research directions are highlighted.

Keywords

Multilevel converter MLC T-Type converter Capacitor Balancing Dual three-level T-type 

Abbreviations

MLC

Multilevel converter

2L

Two-level

3L

Three-level

5L

Five-level

VSC

Voltage source converter

VSI

Voltage source inverter

MV

Medium voltage

PV

Photovoltaic

MPPT

Maximum power point tracking

NPC

Neutral point clamped

FCC

Flying capacitor converter

CHB

Cascaded H-bridge

DC

Direct current

AC

Alternating current

FACTS

Flexible AC transmission system

SVC

Static VAR compensator

EMI

Electromagnetic interference

IGBT

Isolated gate bipolar junction transistor

MOSFET

Metal oxide semiconductor field effect transistor

MPC

Model predictive control

CMV

Common-mode voltage

CMVE

Common-mode voltage elimination

PWM

Pulse width modulation

SHEPWM

Selective harmonic elimination PWM

Y-connected

Star connected

SVPWM

Space vector PWM

THD

Total harmonic distortion

PMSM

Permanent magnet synchronous machine

ANPC

Active neutral point clamped

PCB

Printed circuit board

SiC

Silicon carbide

Si

Silicon

ZSI

Z-source inverter

ST

Shoot-through

NP

Neutral point

CB-PWM

Carrier-based PWM

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to acknowledge the support provided by the Center of Energy and Geo-Processing (CeGP), King Fahd University of Petroleum and Minerals, through the funded Project No. GTEC1701.

References

  1. 1.
    Ali, J.S.M.; Krishnaswamy, V.: An assessment of recent multilevel inverter topologies with reduced power electronics components for renewable applications. Renew. Sustain. Energy Rev. 82, 3379–3399 (2017)Google Scholar
  2. 2.
    Zhou, Y.; Huang, W.; Zhao, P.; Zhao, J.: A transformerless grid-connected photovoltaic system based on the coupled inductor single-stage boost three-phase inverter. IEEE Trans. Power Electron. 29(3), 1041–1046 (2014)Google Scholar
  3. 3.
    Ellabban, O.; Abu-Rub, H.; Blaabjerg, F.: Renewable energy resources: current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 39, 748–764 (2014)Google Scholar
  4. 4.
    Rashid, M.H.: Power Electronics: Devices, Circuits and Applications, 4th edn. Pearson, London (2014). (chapter 5 and chapter 16)Google Scholar
  5. 5.
    Viswambaran, V.K.; Ghani, A.; Zhou, E.: Modeling and simulation of maximum power point tracking algorithms and review of MPPT techniques for PV applications. In: 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA). IEEE (2016)Google Scholar
  6. 6.
    Mishra, S.; Shukla, S.; Verma, N.: Comprehensive review on maximum power point tracking techniques: wind energy. In: Communication, Control and Intelligent Systems (CCIS), 2015. IEEE (2015)Google Scholar
  7. 7.
    Li, Y.; Jiye, H.; Yijia, C.; Yunxuan, L.; Jiamin, X.; Denis, S.; Daniil, P.: A modular MLC type solid state transformer with internal model control method. Int. J. Electr. Power Energy Syst. 85, 153–163 (2017)Google Scholar
  8. 8.
    Chattopadhyay, S.K.; Chakraborty, C.: A new multilevel inverter topology with self-balancing level doubling network. IEEE Trans. Ind. Electron. 61(9), 4622–4631 (2014)Google Scholar
  9. 9.
    Hasan, M.; Mekhilef, S.; Ahmed, M.: Three-phase hybrid multilevel inverter with less power electronic components using space vector modulation. IET Power Electron. 7(5), 1256–1265 (2014)Google Scholar
  10. 10.
    Salem, A.; Ahmed, E.M.; Orabi, M.; Abdelghani, A.B.: Novel three-phase multilevel voltage source inverter with reduced no. of switches. In: Renewable Energy Congress (IREC), 5th International (2014)Google Scholar
  11. 11.
    Alishah, R.S.; Nazarpour, D.; Hosseini, S.H.; Sabahi, M.: Novel topologies for symmetric, asymmetric, and cascade switched-diode multilevel converter with minimum number of power electronic components. IEEE Trans. Ind. Electron. 61(10), 5300–5310 (2014)Google Scholar
  12. 12.
    Alishah, R.S.; Nazarpour, D.; Hosseini, S.H.; Sabahi, M.: Design of new single-phase multilevel voltage source inverter. Int. J. Power Electron. Drive Syst. 5(1), 45 (2014)Google Scholar
  13. 13.
    Babaei, E.; Hosseini, S.H.; Gharehpetian, G.B.; Haque, M.T.; Sabahi, M.: Reduction of DC voltage sources and switches in asymmetrical multilevel converters using a novel topology. Electr. Power Syst. Res. 77(8), 1073–1085 (2007)Google Scholar
  14. 14.
    Babaei, E.: A cascade multilevel converter topology with reduced number of switches. IEEE Trans. Power Electron. 23(6), 2657–2664 (2008)Google Scholar
  15. 15.
    Banaei, M.R.; Salary, E.: New multilevel inverter with reduction of switches and gate driver. Energy Convers. Manag. 52(2), 1129–1136 (2011)Google Scholar
  16. 16.
    Murugesan, G.; Sathik, M.J.; Praveen, M.: A new multilevel inverter topology using less number of switches. Int. J. Eng. Sci. Technol. 3(2) (2011)Google Scholar
  17. 17.
    Kang, F.S.: A modified cascade transformer-based multilevel inverter and its efficient switching function. Electr. Power Syst. Res. 79(12), 1648–1654 (2009)Google Scholar
  18. 18.
    Kang, F.S.: Modified multilevel inverter employing half-and full-bridge cells with cascade transformer and its extension to photovoltaic power generation. Electr. Power Syst. Res. 80(12), 1437–1445 (2010)Google Scholar
  19. 19.
    Yuan, X.; Barbi, I.: Fundamentals of a new diode clamping multilevel inverter. IEEE Trans. Power Electron. 15(4), 711–718 (2000)Google Scholar
  20. 20.
    Schweizer, M.; Kolar, J.W.: Design and implementation of a highly efficient three-level T-type converter for low-voltage applications. IEEE Trans. Power Electron. 28(2), 899–907 (2013)Google Scholar
  21. 21.
    Schweizer, M.; Kolar, J.W.: High efficiency drive system with 3-level T-type inverter. In: Proceedings of the 2011-14th European Conference on Power Electronics and Applications (EPE 2011) (2011)Google Scholar
  22. 22.
    Soeiro, T.B.; Kolar, J.W.: The new high-efficiency hybrid neutral-point-clamped converter. IEEE Trans. Ind. Electron. 60(5), 1919–1935 (2013)Google Scholar
  23. 23.
    Soeiro, T.B.; Schweizer, M.; Linner, J.; Ranstad, P.; Kolar, J.W.: Comparison of 2-and 3-level active filters with enhanced bridge-leg loss distribution. In: 2011 IEEE 8th International Conference on Power Electronics and ECCE Asia (ICPE & ECCE), pp. 1835–1842 (2011)Google Scholar
  24. 24.
    Salem, A.; Elsied, M.F.; Druant, J.; De Belie, F.; Oukaour, A.; Gualous, H.; Melkebeek, J.: An advanced multilevel converter topology with reduced switching elements. In: Industrial Electronics Society, IECON 2014-40th Annual Conference of the IEEE, pp. 1201–1207 (2014)Google Scholar
  25. 25.
    Elsied, M.; Salem, A.; Oukaour, A.; Gualous, H.; Chaoui, H.; Youssef, F.T.; Mohammed, O.: Efficient power-electronic converters for electric vehicle applications. In: Vehicle Power and Propulsion Conference (VPPC), 2015 IEEE (2015)Google Scholar
  26. 26.
    Vahedi, H.; Rahmani, S.; Al-Haddad, K.: Pinned mid-points multilevel inverter (PMP): three-phase topology with high voltage levels and one bidirectional switch. In: Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE, pp. 102–107 (2013)Google Scholar
  27. 27.
    Rasilo, P.; Salem, A.; Abdallh, A.; De Belie, F.; Dupré, L.; Melkebeek, J.A.: Effect of multilevel inverter supply on core losses in magnetic materials and electrical machines. IEEE Trans. Energy Convers. 30(2), 736–744 (2015)Google Scholar
  28. 28.
    Salem, A.; Abdallh, A.A.E.; De Belie, F.; Dupré, L.; Melkebeek, J.: A comparative study of the effect of different converter topologies on the iron loss of nonoriented electrical steel. IEEE Trans. Magn. 50(11), 1–4 (2014)Google Scholar
  29. 29.
    Salem, A.; Abdallh, A.A.E.; De Belie, F.; Dupré, L.; Melkebeek, J.: A comparative analysis of the effect of different converter topologies on the iron loss of nonoriented electrical steel. IEEE Trans. Magn. 50, 1–4 (2014)Google Scholar
  30. 30.
    Salem, A.; Abdallh, A.; Rasilo, P.; De Belie, F.; Ibrahim, M.N.; Dupré, L.; Melkebeek, J.: The effect of common-mode voltage elimination on the iron loss in machine core laminations of multilevel drives. IEEE Trans. Magn. 51(11), 1–4 (2015)Google Scholar
  31. 31.
    Salem, A.; De Belie, F.; Sergeant, P.; Abdallh, A.; Melkebeek, J.: Loss evaluation of interior permanent-magnet synchronous machine drives using T-type multilevel converters. In: 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), pp. 101–106 (2015)Google Scholar
  32. 32.
    Salem, A.; De Belie, F.; Melkebeek, J.: A novel space-vector PWM computations for a dual three-level T-type converter applied to an open end-winding induction machine. In: Power Systems Conference (MEPCON), 2016 Eighteenth International Middle East, pp. 633–638 (2016)Google Scholar
  33. 33.
    Salem, A.; De Belie, F.; Darba, A.; Eissa, M.; Wasfy, S.M.; Melkebeek, J.: Evaluation of a dual-T-type converter supplying an open-end winding induction machine. In: Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE, pp. 749–754 (2013)Google Scholar
  34. 34.
    Nabae, A.; Takahashi, I.; Akagi, H.: A new neutral-point-clamped PWM inverter. IEEE Trans. Ind. Appl. 5, 518–523 (1981)Google Scholar
  35. 35.
    Hochgraf, C.; Lasseter, R.; Divan, D.; Lipo, T.A.: Comparison of multilevel inverters for static var compensation. In: Industry Applications Society Annual Meeting, 1994, Conference Record of the 1994 IEEE, vol. 2, pp. 921–928 (1994)Google Scholar
  36. 36.
    Menzies, R.W.; Zhuang, Y.: Advanced static compensation using a multilevel GTO thyristor inverter. IEEE Trans. Power Deliv. 10(2), 732–738 (1995)Google Scholar
  37. 37.
    Peng, F.Z.; Lai, J.S.; McKeever, J.W.; VanCoevering, J.: A multilevel voltage-source inverter with separate DC sources for static var generation. IEEE Trans. Ind. Appl. 32(5), 1130–1138 (1996)Google Scholar
  38. 38.
    Lai, J.S.; Peng, F.Z.: Multilevel converters–a new breed of power converters. IEEE Trans. Ind. Appl. 32(3), 509–517 (1996)Google Scholar
  39. 39.
    Peng, F.Z.; Lai, J.S.: Dynamic performance and control of a static var generator using cascade multilevel inverters. IEEE Trans. Ind. Appl. 33(3), 748–755 (1997)Google Scholar
  40. 40.
    Peng, F.Z.; McKeever, J.W.; Adams, D.J.: Cascade multilevel inverters for utility applications. In: 23rd International Conference on Industrial Electronics, Control and Instrumentation. IECON 97, vol. 2, pp. 437–442 (1997)Google Scholar
  41. 41.
    Joos, G.; Huang, X.; Ooi, B.T.: Direct-coupled multilevel cascaded series VAR compensators. IEEE Trans. Ind. Appl. 34(5), 1156–1163 (1998)Google Scholar
  42. 42.
    Peng, F.Z.; McKeever, J.W.; Adams, D.J.: A power line conditioner using cascade multilevel inverters for distribution systems. IEEE Trans. Ind. Appl. 34(6), 1293–1298 (1998)Google Scholar
  43. 43.
    Tolbert, L.M.; Peng, F.Z.; Habetler, T.G.: Multilevel inverters for electric vehicle applications. Power Electron. Transp. 1998, 79–84 (1998)Google Scholar
  44. 44.
    Manjrekar, M.D.; Lipo, T.A.: A hybrid multilevel inverter topology for drive applications. In: Applied Power Electronics Conference and Exposition, 1998. APEC’98. Conference Proceedings 1998, Thirteenth Annual, vol. 2, pp. 523–529 (1998)Google Scholar
  45. 45.
    Manjrekar, M.D.; Lipo, T.A.: A generalized structure of multilevel power converter. In: 1998 International Conference on Power Electronic Drives and Energy Systems for Industrial Growth, 1998. Proceedings, vol. 1, pp. 62–67 (1998)Google Scholar
  46. 46.
    Tolbert, L.M.; Peng, F.Z.; Habetler, T.G.: A multilevel converter-based universal power conditioner. IEEE Trans. Ind. Appl. 36(2), 596–603 (2000)Google Scholar
  47. 47.
    Tolbert, L.A.; Peng, F.Z.; Cunnyngham, T.; Chiasson, J.N.: Charge balance control schemes for cascade multilevel converter in hybrid electric vehicles. IEEE Trans. Ind. Electron. 49(5), 1058–1064 (2002)Google Scholar
  48. 48.
    Corzine, K.; Familiant, Y.: A new cascaded multilevel H-bridge drive. IEEE Trans. Power Electron. 17(1), 125–131 (2002)Google Scholar
  49. 49.
    Luiz, A.S.A.; de Jesus Cardoso Filho, B.: A new design of selective harmonic elimination for adjustable speed operation of AC motors in mining industry. In: Applied Power Electronics Conference and Exposition (APEC), 2017 IEEE, pp. 607–614 (2017)Google Scholar
  50. 50.
    Rahul, S.: A comparative analysis of speed control methods for induction motor FED by Neutral point clamped inverter. Dissertation Indian Institute of Technology Gandhinagar (2016)Google Scholar
  51. 51.
    Benaouda, O.F.; Bendiabdellah, A.; Cherif, B.D.E.: Contribution to reconfigured multi-level inverter fed double stator induction machine DTC-SVM control. Int. Rev. Model. Simul. 9(5), 317–328 (2016)Google Scholar
  52. 52.
    Sadhwani, R.; Ragavan, K.: A comparative study of speed control methods for induction motor fed by three level inverter. In: IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES) (2016)Google Scholar
  53. 53.
    Zhang, Y.; Bai, Y.: Model predictive flux control of three-level inverter-fed induction motor drives based on space vector modulation. In: Future Energy Electronics Conference and ECCE Asia, 2017 IEEE 3rd International, pp. 986–991 (2017)Google Scholar
  54. 54.
    Zhang, Z.; Tian, W.; Xiong, W.; Kennel, R.: Predictive torque control of induction machines fed by 3L-NPC converters with online weighting factor adjustment using Fuzzy Logic. In: Transportation Electrification Conference and Expo (ITEC), 2017 IEEE, pp. 84–89 (2017)Google Scholar
  55. 55.
    Wang, X.; Zhou, Y.; Yang, D.; Shi, X.: Direct torque control of three-level inverter-Fed PMSM based on zero voltage vector distribution for torque ripple reduction. In: Control and Decision Conference (CCDC), 2017 29th Chinese, pp. 7776–7781 (2017)Google Scholar
  56. 56.
    Davletzhanova, Z.; Alatise, O.; Gonzalez, J.O.; Konaklieva, S.; Bonyadi, R.: Electrothermal stresses in SiC MOSFET and Si IGBT 3L-NPC converters for motor drive applications. In: PCIM Europe 2017; Proceedings of VDE (2017)Google Scholar
  57. 57.
    Bharatiraja, C.; Jeevananthan, S.; Munda, J.L.: A timing correction algorithm based extended SVM for three level neutral point clamped MLI in over modulation zone. IEEE J. Emerg. Sel. Top. Power Electron. 6, 233–245 (2017)Google Scholar
  58. 58.
    Ariff, E.E.; Dordevic, O.; Jones, M.: A space vector PWM technique for a three level symmetrical six phase drive. IEEE Trans. Ind. Electron. 64, 8396–8405 (2017)Google Scholar
  59. 59.
    Ismail, H.; Jidin, A.; Patkar, F.; Tarusan, S.A.; Razi, A.; Rahim, M.K.: Constant switching frequency torque controller for DTC of induction motor drives with three-level NPC inverter. In: 2016 IEEE International Conference on Power and Energy (PECon), pp. 210–215 (2016)Google Scholar
  60. 60.
    Le, Q.A.; Park, D.H.; Lee, D.C.: Common-mode voltage elimination with an auxiliary half-bridge circuit for five-level active NPC inverters. J. Power Electron. 17(4), 923–932 (2017)Google Scholar
  61. 61.
    Dey, P.; Datta, M.; Fernando, N.: A coordinated control of grid connected PMSG based wind energy conversion system under grid faults. In: Future Energy Electronics Conference and ECCE Asia (IFEEC 2017-ECCE Asia), 2017 IEEE 3rd International, pp. 597–602 (2017)Google Scholar
  62. 62.
    Choi, W.; Wu, Y.; Han, D.; Gorman, J.; Palavicino, P.C.; Lee, W.; Sarlioglu, B.: Reviews on grid-connected inverter, utility-scaled battery energy storage system, and vehicle-to-grid application-challenges and opportunities. In: Transportation Electrification Conference and Expo (ITEC), 2017 IEEE, pp. 203–210 (2017)Google Scholar
  63. 63.
    Aggarwal, S.; Nijhawan, P.G.: Role of DC-MLI based D-STATCOM in distribution network with FOC induction motor drive (Doctoral dissertation) (2017)Google Scholar
  64. 64.
    Marija, J.: High power modular converters for grid interface applications. Dissertation, University of Nottingham (2017)Google Scholar
  65. 65.
    Ibáñez, M.: New topology for STATCOM (2017). ISSN 1653–5146Google Scholar
  66. 66.
    Lai, X.; Pei, Y.; Li, N.: Direct power control strategy of three-level SVG used in power system. In: Power and Energy Engineering Conference (APPEEC), 2016 IEEE PES Asia-Pacific, pp. 2443–2447 (2016)Google Scholar
  67. 67.
    Moghbel, M.; Masoum, M.A.; Deilami, S.: Optimal placement and sizing of multiple STATCOM in distribution system to improve voltage profile. In: Power Engineering Conference (AUPEC), 2016 Australasian Universities, pp. 1–5 (2016)Google Scholar
  68. 68.
    Schweizer, M.; Lizama, I.; Friedli, T.; Kolar, J.W.: Comparison of the chip area usage of 2-level and 3-level voltage source converter topologies. In: IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, pp. 391–396 (2010)Google Scholar
  69. 69.
    Schweizer, M.; Friedli, T.; Kolar, J.W.: Comparative evaluation of advanced three-phase three-level inverter/converter topologies against two-level systems. IEEE Trans. Ind. Electron. 60(12), 5515–5527 (2013)Google Scholar
  70. 70.
    Stempfle, M.; Fischer, M.; Nitzsche, M.; Wölfle, J.; Roth-Stielow, J.: Efficiency analysis of three-level NPC and T-type voltage source inverter for various operation modes optimizing the overall drive train efficiency by an operating mode selection. In: 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), pp. 1–10 (2016)Google Scholar
  71. 71.
    Brueske, S.; Robin K.; Friedrich, Fuchs W.: Comparison of topologies for the main inverter of an electric vehicle. In: PCIM Europe (2014)Google Scholar
  72. 72.
    Fuji Electric Innovation Energy Technology: Three-level modules with authentic RB-IGBT. Application Note No. MT5F30875 (2015)Google Scholar
  73. 73.
    Avci, E.; Uçar, M.: Analysis and design of grid-connected 3-phase 3-level AT-NPC inverter for low-voltage applications. Turk. J. Electr. Eng. Comput. Sci. 25(3), 2464–2478 (2017)Google Scholar
  74. 74.
    Lee, K.; Shin, H.; Choi, J.: Comparative analysis of power losses for 3-Level NPC and T-type inverter modules. In: INTELEC, 2015 IEEE International (2015)Google Scholar
  75. 75.
    Wang, Y.; Shi, W.W.; Xie, N.; Wang, C.M.: Diode-free T-type three-level neutral-point-clamped inverter for low-voltage renewable energy system. IEEE Trans. Ind. Electron. 61(11), 6168–6174 (2014)Google Scholar
  76. 76.
    Krishna, K.C.; Viswanathan, M.: Diode free T-type five level neutral point clamped inverter for low voltage DC system. IEEE Trans. Ind. Electron. 61, 6168–6174 (2014)Google Scholar
  77. 77.
    Shin, S.; Jung, A.; Byoung, L.: Maximum efficiency operation of three-level T-type inverter for low-voltage and low-power home appliances. J. Electr. Eng. Technol. 10(2), 586–594 (2015)Google Scholar
  78. 78.
    Salem, A.: Design and analysis of five-level T-type power converters for rotating field drives. Doctoral dissertation, Ghent University (2015)Google Scholar
  79. 79.
    Bose, B.K.: Chapter 5 voltage fed converter. In: Bose, B.K. (ed.) Modern Power Electronics and AC drives, pp. 224–236. Prentice Hall, Upper Saddle River (2002)Google Scholar
  80. 80.
    Xing, X.; Chen, A.; Zhang, Z.; Chen, J.; Zhang, C.: Model predictive control method to reduce common-mode voltage and balance the neutral-point voltage in three-level T-type inverter. In: Applied Power Electronics Conference and Exposition (APEC), 2016 IEEE, pp. 3453–3458 (2016)Google Scholar
  81. 81.
    Aly, M.; Shoyama, M.: An efficient neutral point voltage control algorithm with reduced switching losses for three level inverters. 2014 IEEE International Conference on PECon (2014)Google Scholar
  82. 82.
    Zhang, T.; Du, C.; Qin, C.; Xing, X.; Chen, A.; Zhang, C.: Neutral-point voltage balancing control for three-level T-type inverter using SHEPWM. In: IPEMC-ECCE Asia, 2016 IEEE 8th International, pp. 1116–1122 (2016)Google Scholar
  83. 83.
    Ding, R.; Mei, J.; Zhao, J.; Zhao, Z.; Tian, J.: A simplified balance factor based midpoint voltage deviation eliminating method for T-type three-level inverter. In: 2016 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), pp. 328–333 (2016)Google Scholar
  84. 84.
    Salem, A.; Belie, F.D.; Yousef, T.; Melkebeek, J.; Mohamed, O.A.; Abido, M.A.: Advanced multilevel converter applied to an open-ends induction machine: analysis, implementation and loss evaluation. In: Electric Machines and Drives Conference (IEMDC), 2017 IEEE International, pp. 1–8 (2017)Google Scholar
  85. 85.
    Pires, V.F.; Foito, D.; Sousa, D.M.: Conversion structure based on a dual T-type three-level inverter for grid connected photovoltaic applications. In: IEEE 5th International Symposium on PEDG (2014)Google Scholar
  86. 86.
    Shi, Y.; Shi, Y.; Wang, L.; Xie, R.; Li, H.: A 50 kW high power density paralleled-five-level PV converter based on SiC T-type MOSFET modules. In: Energy Conversion Congress and Exposition (ECCE), pp. 1–8 (2016)Google Scholar
  87. 87.
    de Almeida, C.; Torricopé, R.; Neto, J.; Torrico, G.: Five-level T-type inverter based on multistate switching cell. IEEE Trans. Ind. Appl. 50(6), 3857–3866 (2014)Google Scholar
  88. 88.
    Cacau, R.G.; Bascopé, R.P.; Neto, J.A.; Bascopé, G.V.: Five-level T-type inverter based on multi-state switching cell. In: 2012 10th IEEE/IAS International Conference on Industry Applications (INDUSCON), pp. 1–8 (2012)Google Scholar
  89. 89.
    Pires, V.F.; Foito, D.; Martins, J.F.: Multilevel power converter with a dual T-type three level inverter for energy storage. In: 2014 International Conference on OPTIM (2014)Google Scholar
  90. 90.
    Bhattacharya, S.; Mascarella, D.; Joós, G.; Cyr, J.M.; Xu, J.: A dual three-level T-NPC inverter for high-power traction applications. IEEE J. Emerg. Sel. Top. Power Electron. 4(2), 668–678 (2016)Google Scholar
  91. 91.
    Sato, D.; Itoh, J.: Total loss comparison of inverter circuit topologies with interior permanent magnet synchronous motor drive system. In: ECCE Asia, 2013 IEEE (2013)Google Scholar
  92. 92.
    Liang, D.; Li, J.; Qu, R.; Zheng, P.; Song, B.: Evaluation of high-speed permanent magnet synchronous machine drive with three-level and two-level inverter. In: Electric Machines and Drives Conference (IEMDC), 2015 IEEE International, pp. 1586–1592 (2015)Google Scholar
  93. 93.
    Gao, C.; Jiang, X.; Li, Y.; Chen, Z.; Liu, J.: A DC-link voltage self-balance method for a diode-clamped modular multilevel converter with minimum number of voltage sensors. IEEE Trans. Power Electron. 28(5), 2125–2139 (2013)Google Scholar
  94. 94.
    Pou, J.; Pindado, R.; Boroyevich, D.: Voltage-balance limits in four level diode-clamped converter switch passive front ends. IEEE Trans. Ind. Electron. 52(1), 190–196 (2005)Google Scholar
  95. 95.
    Kanchan, R.; Tekwani, P.; Gopakumar, K.: Three-level inverter scheme with common mode voltage elimination and dc-link capacitor voltage balancing for an open end winding induction motor drive. In: 2005 IEEE International Conference on Electric Machines and Drives, pp. 1445–1452 (2005)Google Scholar
  96. 96.
    Wang, K.; Zheng, Z.; Xu, L.; Li, Y.: A four-level hybrid-clamped converter with natural capacitor voltage balancing ability. IEEE Trans. Power Electron. 29(3), 1152–1162 (2014)Google Scholar
  97. 97.
    Ghias, A.M.; Pou, J.; Ciobotaru, M.; Agelidis, V.G.: Voltage balancing method using phase-shifted PWM for the flying capacitor multilevel converter. IEEE Trans. Power Electron. 29(9), 4521–4531 (2014)Google Scholar
  98. 98.
    Amini, J.: An effortless space-vector-based modulation for n-level flying capacitor multilevel inverter with capacitor voltage balancing capability. IEEE Trans. Power Electron. 29(11), 6188–6195 (2014)Google Scholar
  99. 99.
    Saeedifard, M.; Iravani, R.; Pou, J.: Analysis and control of DC capacitor voltage-drift phenomenon of a passive front-end five-level converter. IEEE Trans. Ind. Electron. 54(6), 3255–3266 (2007)Google Scholar
  100. 100.
    Salem, A.; De Belie, F.; Youssef, T.; Melkebeek, J.; Mohamed, O.A.; Abido, M.A.: DC link capacitor voltage balancing of a dual three-level T-type AC drive using switching state redundancy. In: Electric Machines and Drives Conference (IEMDC), 2017 IEEE International, pp. 1–8 (2017)Google Scholar
  101. 101.
    Beye, M.; Elsied, M.; Mabwe, A.M.; Onambele, C.: Grid interconnection of renewable energy sources based on advanced multi-level inverter. In: 2017 IEEE International Conference on EEEIC/I&CPS Europe, pp. 1–6 (2017)Google Scholar
  102. 102.
    Barbosa, P.; Steimer, P.; Meysenc, L.; Winkelnkemper, M.; Steinke, J.; Celanovic, N.: Active neutral-point-clamped multilevel converters. In: PESC’05. IEEE 36th, pp. 2296–2301 (2005)Google Scholar
  103. 103.
    Korhonen, J.; Sankala, A.; Ström, J.P.; Silventoinen, P.: Hybrid five-level T-type inverter. In: Industrial Electronics Society, IECON 2014-40th Annual Conference of the IEEE, pp. 1506–1511 (2014)Google Scholar
  104. 104.
    Alnamer, S.S.; Mekhilef, S.; Mokhlis, H.: Proposed new N-multilevel family of topologies for T-type inverter. IEICE Electron. Exp. 14(15), 20170342–20170342 (2017)Google Scholar
  105. 105.
    Ingo, S.: 3L NPC & TNPC topology. Semikron Application Note No. AN11001 (2015)Google Scholar
  106. 106.
    Fair-Child Application Note: Renewable energy solutions: energy efficient components for PV solar systems. http://pdf.directindustry.com/pdf/fairchildsemiconductor/renewable-energy-solutions/33535-259003-_13.html
  107. 107.
    Honsberg, M.; Goto, A.; Motto, E.R.: A new 3 level 4in1 T-type IGBT module with low internal inductance and optimized 6.1st/7th generation 1200 V/650 V chipset for UPS and PV inverter application. In: 2015 17th European Conference on EPE’15 ECCE-Europe (2015)Google Scholar
  108. 108.
    Cree Application Note: Design Considerations for Designing with Cree SiC Modules Part 1. Understanding the Effects of Parasitic Inductance. Cree Inc, Durham (2013)Google Scholar
  109. 109.
    Cree Application Note: Design Considerations for Designing with Cree SiC Modules Part 2 Techniques for Minimizing Parasitic Inductance. Cree Inc, Durham (2013)Google Scholar
  110. 110.
    Cree Application Note: Application Considerations for Silicon Carbide MOSFETs. Cree Inc, Durham (2013)Google Scholar
  111. 111.
    Anthon, A.; Hernandez, J.C.; Zhang, Z.; Andersen, M.A.: Switching investigations on a SiC MOSFET in a TO-247 package. In: Industrial Electronics Society, IECON 2014-40th Annual Conference of the IEEE, pp. 1854–1860 (2014)Google Scholar
  112. 112.
    Anthon, A.; Zhang, Z.; Andersen, M.A.; Holmes, D.G.; McGrath, B.; Teixeira, C.A.: The benefits of SiC mosfet s in a T-type inverter for grid-tie applications. IEEE Trans. Power Electron. 32(4), 2808–2821 (2017)Google Scholar
  113. 113.
    Gurpinar, E.; Castellazzi, A.: Single-phase T-type inverter performance benchmark using Si IGBTs, SiC MOSFETs, and GaN HEMTs. IEEE Trans. Power Electron. 31(10), 7148–7160 (2016)Google Scholar
  114. 114.
    Gu, M.; Xu, P.; Zhang, L.; Sun, K.: A SiC-based T-type three-phase three-level grid tied inverter. In: 2015 IEEE 10th Conference on ICIEA, pp. 1116–1121 (2015)Google Scholar
  115. 115.
    Rabkowski, J.; Sak, T.; Strzelecki, R.; Grabarek, M.: SiC-based T-type modules for multi-pulse inverter with coupled inductors. In: 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), pp. 568–572 (2017)Google Scholar
  116. 116.
    Nguyen, T.D.; Dzung, P.Q.; Dat, D.N.; Nhan, N.H.: The carrier-based PWM method to reduce common-mode voltage for three-level T-type neutral point clamp inverter. In: 2014 IEEE 9th Conference on ICIEA, pp. 1549–1554 (2014)Google Scholar
  117. 117.
    Nguyen, T.D.; Phan, D.Q.; Dao, D.N.; Lee, H.H.: Carrier phase-shift PWM to reduce common-mode voltage for three-level T-type NPC inverters. J. Power Electron. 14(6), 1197–1207 (2014)Google Scholar
  118. 118.
    Ellabban, O.; Abu-Rub, H.: Z-source inverter: topology improvements review. IEEE Ind. Electron. Mag. 10(1), 6–24 (2016)Google Scholar
  119. 119.
    Ellabban, O.; Van Mierlo, J.; Lataire, P.; Van den Bossche, P.: Z-source inverter for vehicular applications. In: Vehicle Power and Propulsion Conference (VPPC), 2011 IEEE, pp. 1–6 (2011)Google Scholar
  120. 120.
    Ellabban, O.; Mosa, M.; Abu-Rub, H.; Rodriguez, J.: Model predictive control of a grid connected quasi-Z-source inverter. In: 2013 IEEE International Conference on Industrial Technology (ICIT), pp. 1591–1596 (2013)Google Scholar
  121. 121.
    Bayhan, S.; Trabelsi, M.; Ellabban, O.; Abu-Rub, H., Balog, R.S.: A five-level neutral-point-clamped/H-bridge quasi-impedance source inverter for grid connected PV system. In: Industrial Electronics Society, IECON 2016-42nd Annual Conference of the IEEE, pp. 2502–2507 (2016)Google Scholar
  122. 122.
    Pires, V.F.; Cordeiro, A.; Foito, D.; Martins, J.F.: Quasi-Zsource inverter with a T-type converter in normal and failure mode. IEEE Trans Power Electron 31(11), 7462–7470 (2016)Google Scholar
  123. 123.
    Pires, V.F.; Foito, D.; Cordeiro, A.; Martins, J.F.: Three-phase T-type qZ source inverter with control current associated to a vectorial modulator for photovoltaic applications. In: 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), pp. 656–661 (2017)Google Scholar
  124. 124.
    Ozdemir, S.: Z-source T-type inverter for renewable energy systems with proportional resonant controller. Int. J. Hydrog. Energy 41(29), 12591–12602 (2016)Google Scholar
  125. 125.
    Xing, X.; Zhang, C.; Chen, A.; He, J.; Wang, W.; Du, C.: Space-vector-modulated method for boosting and neutral voltage balancing in Z-source three-level T-type inverter. IEEE Trans. Ind. Appl. 52(2), 1621–1631 (2016)Google Scholar
  126. 126.
    Solar debt financing on pace to reach highest since: the Bloomberg New Energy Finance (BNEF), 2014. http://www.bnef.org (2010)
  127. 127.
    Guo, X.; Cavalcanti, M.C.; Farias, A.M.; Guerrero, J.M.: Single carrier modulation for neutral-point-clamped inverters in three-phase transformer-less photovoltaic systems. IEEE Trans. Power Electron. 28(6), 2635–2637 (2013)Google Scholar
  128. 128.
    Zhou, Y.; Huang, W.; Zhao, P.; Zhao, J.: A transformer-less grid connected PV system based on the coupled inductor single-stage boost three-phase inverter. IEEE Trans. Power Electron. 29(3), 1041–1046 (2014)Google Scholar
  129. 129.
    Koutroulis, E.; Blaabjerg, F.: Design optimization of transformer-less grid-connected PV inverters including reliability. IEEE Trans. Power Electron. 28(1), 325–335 (2013)Google Scholar
  130. 130.
    Shao, Z.; Xing, Z.; Fusheng, W.; Renxian, C.; Hua, N.: Analysis and control of neutral-point voltage for transformerless three-level PV inverter in LVRT operation. IEEE Trans. Power Electron. 32(3), 2347–2359 (2017)Google Scholar
  131. 131.
    Zorig, A.; Belkheiri, M.; Barkat, S.: Control of three-level T-type inverter based grid connected PV system. In: 2016 13th International Multi-conference on Systems, Signals and Devices (SSD), pp. 66–71 (2016)Google Scholar
  132. 132.
    Kuo, C.-C.; Tzou, Y.-Y.: FPGA control of a single-phase T-type NPC grid inverter for low THD and robust performance. In: Future Energy Electronics Conference and ECCE Asia (IFEEC 2017-ECCE Asia) (2017)Google Scholar
  133. 133.
    Wang, M.; Chen, Q.; Li, G.; Hu, C.; Cheng, L.; Zhou, R.: LCL filter design in T-type three-level grid-connected inverter. In: 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), pp. 2236–2240 (2016)Google Scholar
  134. 134.
    Xia, Y.; Roy, J.; Ayyanar, R.: A high performance T-type single-phase double grounded transformer-less photovoltaic inverter with active power decoupling. In: Energy Conversion Congress and Exposition (ECCE), pp. 1–7 (2016)Google Scholar
  135. 135.
    Abdel-Rahim, O.; Takeuchi, M.; Funato, H.; Junnosuke, H.: T-type three-level neutral point clamped inverter with model predictive control for grid connected photovoltaic applications. In: 2016 19th International Conference on Electrical Machines and Systems (ICEMS), pp. 1–5 (2016)Google Scholar
  136. 136.
    Zhang, Z.; Jiang, M.; Yao, Y.; Kang, L.: Transformerless three-phase T-type three-level inverter for medium-power photovoltaic systems. In: Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), 2016 IEEE 8th International, pp. 1592–1595 (2016)Google Scholar
  137. 137.
    Choi, U.M.; Blaabjerg, F.; Lee, K.B.: Independent control strategy of two DC-link voltages for separate MPPTs in transformerless photovoltaic systems using neutral-point-clamped inverters. In: Applied Power Electronics Conference and Exposition (APEC), 2014 Twenty-Ninth Annual IEEE, pp. 1718–1724 (2014)Google Scholar
  138. 138.
    Park, Y.; Sul, S.K.; Lim, C.H.; Kim, W.C.; Lee, S.H.: Asymmetric control of DC-link voltages for separate MPPTs in three-level inverters. IEEE Trans. Power Electron. 28(6), 2760–2769 (2013)Google Scholar
  139. 139.
    Choi, U.M.; Blaabjerg, F.; Lee, K.B.: Control strategy of two capacitor voltages for separate MPPTs in photovoltaic systems using neutral-point-clamped inverters. IEEE Trans. Ind. Appl. 51(4), 3295–3303 (2015)Google Scholar
  140. 140.
    Choi, U.M.; Jeong, H.G.; Lee, K.B.; Blaabjerg, F.: Method for detecting an open-switch fault in a grid-connected NPC inverter system. IEEE Trans. Power Electron. 27(6), 2726–2739 (2012)Google Scholar
  141. 141.
    Kim, T.J.; Lee, W.C.; Hyun, D.S.: Detection method for open circuit fault in neutral-point clamped inverter systems. IEEE Trans. Ind. Electron. 56(7), 2754–2763 (2009)Google Scholar
  142. 142.
    Khomfoi, S.; Tolbert, L.M.: Fault diagnostic system for a multilevel inverter using a neural network. IEEE Trans. Power Electron. 22(3), 1062–1069 (2007)Google Scholar
  143. 143.
    Choi, U.M.; Lee, K.B.; Blaabjerg, F.: Diagnosis method of an open-switch fault for a grid-connected T-type three-level inverter system. In: 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 470–475 (2012)Google Scholar
  144. 144.
    Choi, U.M.; Lee, K.B.: Detection method of an open-switch fault and fault-tolerant strategy for a grid-connected T-type three-level inverter system. In: Conference on ECCE 2012, pp. 4188–4195 (2012)Google Scholar
  145. 145.
    Lu, B.; Sharma, S.: A literature review of IGBT fault diagnostic and protection methods for power inverters. In: Industry Applications Society Annual Meeting, 2008. IAS’08. IEEE, pp. 1–8 (2008)Google Scholar
  146. 146.
    Ko, Y.J.; Lee, K.B.: Fault diagnosis of a voltage-fed PWM inverter for a three-parallel power conversion system in a wind turbine. J. Power Electron. 10(6), 686–693 (2010)Google Scholar
  147. 147.
    Lezana, P.; Pou, J.; Meynard, T.A.; Rodriguez, J.; Ceballos, S.; Richardeau, F.: Survey on fault operation on multilevel inverters. IEEE Trans. Ind. Electron. 57(7), 2207–2218 (2010)Google Scholar
  148. 148.
    Ko, Y.J.; Lee, K.B.; Lee, D.C.; Kim, J.M.: Fault diagnosis of three-parallel voltage-source converter for a high-power wind turbine. IET Power Electron. 5(7), 1058–1067 (2012)Google Scholar
  149. 149.
    Pires, V.F.; Foito, D.; Amaral, T.G.: Fault detection and diagnosis in a PV grid-connected T-type three level inverter. In: 2015 International Conference on Renewable Energy Research and Applications (ICRERA), pp. 933–937 (2015)Google Scholar
  150. 150.
    Choi, U.M.; Blaabjerg, F.: A novel active T-type three-level converter with open-circuit fault-tolerant control. In: Energy Conversion Congress and Exposition (ECCE), 2015 IEEE, pp. 4765–4772 (2015)Google Scholar
  151. 151.
    Choi, U.M.; Lee, K.B.; Blaabjerg, F.: Diagnosis and tolerant strategy of an open-switch fault for T-type three-level inverter systems. IEEE Trans. Ind. Appl. 50(1), 495–508 (2014)Google Scholar
  152. 152.
    Choi, U.-M.; Lee, K.-B.: Detection method of an open-switch fault and fault-tolerant strategy for a grid-connected T-type three-level inverter system. In: Energy Conversion Congress and Exposition (ECCE) (2012)Google Scholar
  153. 153.
    Chen, J.; Chen, A.; Xing, X.; Zhang, C.: Fault-tolerant control strategy for T-type three-level inverter with neutral-point voltage balancing. In: Applied Power Electronics Conference and Exposition (APEC), 2017 IEEE, pp. 3420–3425 (2017)Google Scholar
  154. 154.
    Nemade, R.V.; Pandit, J.K.; Aware, M.V.: Reconfiguration of T-type inverter for direct torque controlled induction motor drives under open-switch faults. IEEE Trans. Ind. Appl. 53(3), 2936–2947 (2017)Google Scholar
  155. 155.
    Lee, J.-S.; Lee, K.-B.: An open-switch fault detection method and tolerance controls based on SVM in a grid-connected T-type rectifier with unity power factor. IEEE Trans. Ind. Electron. 61(12), 7092–7104 (2014)Google Scholar
  156. 156.
    Lee, J.S.; Lee, K.B.: Open-switch fault tolerance control for a three-level NPC/T-type rectifier in wind turbine systems. IEEE Trans. Ind. Electron. 62(2), 1012–1021 (2015)Google Scholar
  157. 157.
    June-Seok, L.; Choi, U.-M.; Lee, K.-B.: Comparison of tolerance controls for open-switch fault in a grid-connected T-type rectifier. IEEE Trans. Power Electron. 30(10), 5810–5820 (2015)Google Scholar
  158. 158.
    Lee, J.S.; Lee, K.B.: Tolerance controls for open-switch fault in a grid-connected T-type rectifier at low modulation index. In: Applied Power Electronics Conference and Exposition (APEC), 2014 Twenty-Ninth Annual IEEE, pp. 1846–1851 (2014)Google Scholar
  159. 159.
    Xu, S.; Zhang, J.; Hang, J.: Investigation of a fault-tolerant three-level T-type inverter system. IEEE Trans. Ind. Appl. 53, 4613–4623 (2017)Google Scholar
  160. 160.
    Zhang, W.; Liu, G.; Xu, D.; Hawke, J.; Garg, P.; Enjeti, P.: A fault-tolerant T-type three-level inverter system. In: Applied Power Electronics Conference and Exposition (APEC), 2014 Twenty-Ninth Annual IEEE, pp. 274–280 (2014)Google Scholar
  161. 161.
    He, J.; Weise, N.; Wei, L.; Demerdash, N.A.: A fault-tolerant topology of T-type NPC inverter with increased thermal overload capability. In: Applied Power Electronics Conference and Exposition (APEC), 2016 IEEE, pp. 1065–1070 (2016)Google Scholar
  162. 162.
    He, J.; Katebi, R.; Weise, N.; Demerdash, N.A.; Wei, L.: A fault-tolerant T-type multilevel inverter topology with increased overload capability and soft-switching characteristics. IEEE Trans. Ind. Appl. 53(3), 2826–2839 (2017)Google Scholar
  163. 163.
    Advanced NPC 3-level inverter modules applications notes by Fuji, May 2016. https://www.fujielectric.com/products/semiconductor/model/igbt/technical/3level.html

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentKing Fahd University for Petroleum and MineralsDhahranKingdom of Saudi Arabia
  2. 2.Electrical Power and Machines Department, Faculty of EngineeringHelwan UniversityCairoEgypt

Personalised recommendations