Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1321–1335 | Cite as

Investigation on Compaction Densification Behaviors of Multicomponent Mixed Metal Powders to Manufacture Silver-Based Filler Metal Sheets

  • Mengcheng Zhou
  • Shangyu HuangEmail author
  • Yu Lei
  • Wei Liu
  • Shiwei Yan
Research Article - Mechanical Engineering


The powder compaction combines sintering process method was used to fabricate silver-based filler metal thin sheet; the densification behaviors of two mixed metal powder (Ag50Cu50 and Ag60Cu30Sn10) were modeled and investigated. The Drucker–Prager Cap model combines with compaction equations was employed to analyze the mixed metal powder compaction behavior. Firstly, various powder compaction experiments were conducted to determine the powder material parameters, and the friction coefficients were determined experimentally by die compaction. Furthermore, the linear Heckel and nonlinear Gerdemann–Jablonski compaction equations were used to analyze the powder compaction mechanisms. It was observed that lubricant affects the powder deformation and rearrangement densification mechanisms during the powder die compaction process. Finally, finite element modeling results were compared with the validation experiments data to validate the determined constitutive model. The result shows that the established models can accurately describe the mixed powders densification behaviors, which could be used in simulation of tool designing and process parameters optimizing.


Multicomponent mixed metal powders Drucker–Prager Cap (DPC) model Compaction densification behavior Finite element modeling Compaction equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by National Natural Science Foundation of China (No. 51475345), the Open Fund Project of State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (No. P2015-01).


  1. 1.
    Lai, Z.; Xue, S.: Study on microstructure and property of brazed joint of AgCuZn-X(Ga, Sn, In, Ni) brazing alloy. Rare Met. Mater. Eng. 39, 397–400 (2010)CrossRefGoogle Scholar
  2. 2.
    Lai, Z.; Xue, S.; Lu, F.: Effects of Ga and In on the properties of cadmium-free Ag–Cu–Zn filler metal. China Weld. 18, 33–38 (2009)Google Scholar
  3. 3.
    He, Z.; Ding, L.: Investigation on Ag–Cu–Sn brazing filler metals. Mater. Chem. Phys. 49, 1–6 (1997)CrossRefGoogle Scholar
  4. 4.
    Weise, W.; Voelcker, A.; Kaufmann, D.; et al.: Cadmium-free silver alloy brazing solder, method of using said solder, and metal articles brazed with said solder. US 5,531,962 (1996)Google Scholar
  5. 5.
    Zhou, M.; Huang, S.; Hu, J.: A density-dependent modified Drucker–Prager Cap model for die compaction of Ag57.6–Cu22.4–Sn10–In10 mixed metal powders. Powder Technol. 305, 183–196 (2017)CrossRefGoogle Scholar
  6. 6.
    Andrieux, J.; Dezellus, O.; Bosselet, F.: Details on the formation of Ti\(_2\)Cu\(_3\) in the Ag–Cu–Ti system in the temperature range 790 to \(860\,^{\circ }\text{ c }\). J. Phase Equilib. Diffus. 29, 156–162 (2008)CrossRefGoogle Scholar
  7. 7.
    Kuhn, H.A.; Downey, C.L.: Deformation characteristics and plasticity theory of sintered powder materials. Int. J Powder Metall. 7, 15–25 (1971)Google Scholar
  8. 8.
    Green, R.J.: A plasticity theory for porous solids. Int. J. Mech. Sci. 14, 215–224 (1972)CrossRefzbMATHGoogle Scholar
  9. 9.
    Shima, S.; Oyane, M.: Plasticity theory for porous metals. Int. J. Mech. Sci. 18, 285–291 (1976)CrossRefGoogle Scholar
  10. 10.
    Lee, S.C.; Kim, K.T.: Densification behavior of aluminum alloy powder under cold compaction. Int. J. Mech. Sci. 44, 1295–1308 (2002)CrossRefGoogle Scholar
  11. 11.
    Lee, S.C.; Kim, K.T.: A study on the Cap model for metal and ceramic powder under cold compaction. Mater. Sci. Eng. A 445–446, 163–169 (2007)CrossRefGoogle Scholar
  12. 12.
    Cho, J.H.; Kim, K.T.: Densification of mixed powder at high temperature. Int. J. Mech. Sci. 43, 921–933 (2001)CrossRefGoogle Scholar
  13. 13.
    Han, P.; An, X.Z.; Zhang, Y.X.; et al.: FEM modeling on the compaction of Fe and Al composite powders. J. Min. Metall. 51, 163–171 (2015)CrossRefGoogle Scholar
  14. 14.
    Kim, K.T.; Cho, J.H.: A densification model for mixed metal powder under cold compaction. Int. J. Mech. Sci. 43, 2929–2946 (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Fleck, N.A.; Kuhn, L.T.; Mcmeeking, R.M.: Yielding of metal powder bonded by isolated contacts. J. Mech. Phys. Solids 40, 1139–1162 (1992)CrossRefzbMATHGoogle Scholar
  16. 16.
    Gurson, A.L.: Continuum theory of ductile rupture by void nucleation and growth: Part 1- yield criteria and Tow rules for porous ductile media. J. Eng. Mater. Technol. 99, 297–300 (1977)CrossRefGoogle Scholar
  17. 17.
    Zhang, B.; Jain, M.; Zhao, C.: Experimental calibration of density-dependent modified Drucker–Prager/Cap model using an instrumented cubic die for powder compact. Powder Technol. 204, 27–41 (2010)CrossRefGoogle Scholar
  18. 18.
    Coube, O.; Riedel, H.: Numerical simulation of metal powder die compaction with special consideration of cracking. Powder Metall. 43, 123–131 (2000)CrossRefGoogle Scholar
  19. 19.
    Shang, C.; Sinka, I.C.; Pan, J.: Constitutive model calibration for powder compaction using instrumented die testing. Exp. Mech. 52, 903–916 (2012)CrossRefGoogle Scholar
  20. 20.
    Zhou, R.; Zhang, L.H.; He, B.Y.: Numerical simulation of residual stress field in green power metallurgy compacts by modified Drucker-Prager Cap model. Trans. Nonferrous Met. Soc. China 23, 2374–2382 (2013)CrossRefGoogle Scholar
  21. 21.
    Wu, C.Y.; Ruddy, O.M.; Bentham, A.C.; et al.: Modelling the mechanical behaviour of pharmaceutical powders during compaction. Powder Technol. 152, 107–117 (2005)CrossRefGoogle Scholar
  22. 22.
    Aydin, I.; Briscoe, B.J.; Şanlitürk, K.Y.: The internal form of compacted ceramic components: a comparison of a finite element modelling with experiment. Powder Technol. 89, 239–254 (1996)CrossRefGoogle Scholar
  23. 23.
    Mitra, B.; Hilden, J.; Litster, J.D.: Compaction mechanics of plastically deformable dry granules. Powder Technol. 291, 328–336 (2016)CrossRefGoogle Scholar
  24. 24.
    Mitra, B.; Hilden, J.; Litster, J.D.: Effects of the granule composition on the compaction behavior of deformable dry granules. Powder Technol. 291, 487–498 (2016)CrossRefGoogle Scholar
  25. 25.
    Ghiţă, C.; Popescu, I.N.: Experimental research and compaction behaviour modelling of aluminium based composites reinforced with silicon carbide particles. Comput. Mater. Sci. 64, 136–140 (2012)CrossRefGoogle Scholar
  26. 26.
    Hesabi, Z.R.; Hafizpour, H.R.; Simchi, A.: An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling. Mater. Sci. Eng. A 454, 89–98 (2007)CrossRefGoogle Scholar
  27. 27.
    Sivasankaran, S.; Sivaprasad, K.; Narayanasamy, R.: Evaluation of compaction equations and prediction using adaptive neuro-fuzzy inference system on compressibility behavior of AA \(6061_{{\rm 100-x}}-\text{ x } \text{ wt }.\%\) TiO2 nanocomposites prepared by mechanical alloying. Powder Technol. 209, 124–137 (2011)CrossRefGoogle Scholar
  28. 28.
    Ge, G.; Hu, J.H.; Cheng, C.: Forming equation about multivariate mixed metal powder by electromagnetic compaction. Chin. J. Nonferrous Met. 25, 1937–1942 (2015)CrossRefGoogle Scholar
  29. 29.
    Han, L.H.; Elliott, J.A.; Bentham, A.C.; Mills, A.; Amidon, G.E.; Hancock, B.C.: A modified Drucker–Prager Cap model for die compaction simulation of pharmaceutical powders. Int. J. Solids Struct. 45, 3088–3106 (2008)CrossRefzbMATHGoogle Scholar
  30. 30.
    Heckel, R.W.: Density-pressure relationships in powder compaction. Trans. Met. Soc. AIME 221, 671–675 (1961)Google Scholar
  31. 31.
    Gerdemann, S.J.; Jablonski, P.D.: Compaction of titanium powders. Metall. Mater. Trans. A 42, 1325–1333 (2011)CrossRefGoogle Scholar
  32. 32.
    Machaka, R.; Chikwanda, H.K.: An experimental evaluation of the Gerdemann–Jablonski compaction equation. Metall. Mater. Trans. A 46, 1–7 (2015)Google Scholar
  33. 33.
    Sinka, I.C.; Cunningham, J.C.; Zavaliangos, A.: The effect of wall friction in the compaction of pharmaceutical tablets with curved faces: a validation study of the Drucker–Prager Cap model. Powder Technol. 133, 33–43 (2003)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Mengcheng Zhou
    • 1
  • Shangyu Huang
    • 1
    • 2
    Email author
  • Yu Lei
    • 1
  • Wei Liu
    • 1
  • Shiwei Yan
    • 1
  1. 1.School of Materials Science and EngineeringWuhan University of TechnologyWuhanChina
  2. 2.State Key Laboratory of Materials Processing and Die and Mould TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations