Advertisement

Nickel-Substituted Polyoxometalate Nanomaterial as a Green and Recyclable Catalyst for Dye Decolorization

  • Nacéra Zabat
Research Article - Chemistry

Abstract

The catalytic activity of a synthesized nanopolyoxometalate \((\upalpha _{2}\hbox {P}_{2}\hbox {W}_{17}\hbox {NiO}_{61})^{8-}\) was investigated in the decolorization of methyl orange (MO) using KMnO\(_{4}\) as an oxidant in aqueous medium. This catalyst was synthesized by the incorporation of nickel into the polytungstic matrix of a lacunar compound \((\upalpha _{2}\hbox {P}_{2}\hbox {W}_{17})^{10-}\) which was prepared from a saturated parent molecule (\(\upalpha \hbox {P}_{2}\hbox {W}_{18})^{6-}\). For characterization, the applied methods, IR, UV–vis, and XRD, have been studied. The optimal experimental conditions were achieved at: pH 6, \(25\,{^{\circ }}\hbox {C}\), 10 mg/L of MO concentration, 0.1 mM of oxidant concentration, and 0.3 g of catalyst mass. Under these conditions, the discoloration efficiency obtained was 90.75%. The presence of chloride and sulfate ions showed the inhibitory effect on the discoloration efficiency. At the end of the discoloration reaction, the catalyst was recovered, washed, and reused in several cycles keeping its catalytic activity intact.

Keywords

Oxidation catalysis \(\hbox {KMnO}_{4}\) Methyl orange Nano-(POM)s Water pollution Recyclable catalyst 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Svanberg, H.; Struve, H.: J. Prakt. Chem. 44, 257–291 (1848)CrossRefGoogle Scholar
  2. 2.
    Dawson, B.: The structure of the 9(18)-heteropolyanion in potassium 9 (18) tungsto phosphate, \(\text{ K }_{6}(\text{ P }_{2}\text{ W }_{18}\text{ O }_{62})\text{14H }_{2}\text{ O }\). Acta. Crystallo. 6, 113–126 (1953)CrossRefGoogle Scholar
  3. 3.
    Pope, M.T.: Heteropoly and Isopoly Oxometalates. Springer, Berlin (1983)CrossRefGoogle Scholar
  4. 4.
    Contant, R.; Hervé, G.: The heteropolyoxotungstates: relationships between routes of formation and structures. Rev. Inorg. Chem. 22, 63–111 (2002)CrossRefGoogle Scholar
  5. 5.
    Ciabrini, J.P.; Contant, R.: Mixed heteropolyanions. Synthesis and formation constants of Cerium (III) and Cerium (IV) complexes with lacunary tungstophosphates. J. Chem. Res. 391, 2720–2744 (1993)Google Scholar
  6. 6.
    Rhule, J.T.; Hill, C.L.; Judd, D.A.: Polyoxometalates in medicine. Chem. Rev. 98, 327–357 (1988)CrossRefGoogle Scholar
  7. 7.
    Omwoma, S.; Chen, W.; Tsunashima, R.; Song, Y.-F.: Recent advances on polyoxometalates intercalated layered double hydroxides: from synthetic approaches to functional material applications. Coord. Chem. Rev. 258–259, 58–71 (2014)CrossRefGoogle Scholar
  8. 8.
    Bielanski, A.; Lubanska, A.; Micek-Ilnicka, A.; Pozniczek, J.: Polyoxometalates as the catalysts for tertiary ethers MTBE and ETBE synthesis. Coord. Chem. Rev. 249, 2222–2231 (2005)CrossRefGoogle Scholar
  9. 9.
    Ding, B.; Gong, J.; Kim, J.; Shiratori, S.: Polyoxometalate nanotubes from layer-by-layer coating and thermal removal of electrospun nanofibers. Nanotechnology 16, 785–790 (2005)CrossRefGoogle Scholar
  10. 10.
    Biboum, R.N.; Keita, B.; Franger, S.; Nanseu Njiki, C.P.; Zhang, G.; Zhang, J.; Liu, T.; Mbomekalle, I.-M.; Nadjo, L.: Pd0@Polyoxometalate nanostructures as green electrocatalysts: illustrative example of hydrogen production. Materials 3, 741–754 (2010)CrossRefGoogle Scholar
  11. 11.
    Wang, W.; Yang, S.: Photocatalytic degradation of organic dye methyl orange with phosphotungstic acid. J. Water Resour. Prot. 2, 979–983 (2010)CrossRefGoogle Scholar
  12. 12.
    Bakheet, B.; Yuan, S.; Li, Z.; Wang, H.; Zuo, J.; Komarneni, S.; Wang, Y.: Electro-peroxone treatment of Orange II dye waste water. Water Res. 47, 6234–6243 (2013)CrossRefGoogle Scholar
  13. 13.
    Brillas, E.; Martínez-Huitle, C.A.: Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B. Environ 166, 603–643 (2015)CrossRefGoogle Scholar
  14. 14.
    Bahramia, M.; Nezamzadeh-Ejhieh, A.: Effect of the supported ZnO on clinoptilolite nano-particles in the photodecolorization of semi-real sample bromothymol blue aqueous solution. Mater. Sci. Semicond. Proc. 30, 275–284 (2015)CrossRefGoogle Scholar
  15. 15.
    Buthiyappan, A.; Abdul Aziz, A-R.; Wan Daud W. M. A.; Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents. Rev. Chem. Eng. 32 (2015)Google Scholar
  16. 16.
    Nezamzadeh-Ejhieh, A.; Hushmandrad, S.: Solar photodecolorization of methylene blue by CuO/X zeolite as a heterogeneous catalyst. Appl. Catal. A. Gen. 388, 149–159 (2010)CrossRefGoogle Scholar
  17. 17.
    Nezamzadeh-Ejhieh, A.; Banan, Z.: A comparison between the efficiency of CdS nanoparticles/zeolite A and CdO/zeolite A as catalysts in photodecolorization of crystal violet. Desalination 279, 146–151 (2011)CrossRefGoogle Scholar
  18. 18.
    Salima, A.; Benaouda, B.; Noureddine, B.; Duclaux, L.: Application of Ulva lactuca and Systoceira stricta algae-based activated carbons to hazardous cationic dyes removal from industrial effluents. Water Res. 47, 3375–3388 (2013)CrossRefGoogle Scholar
  19. 19.
    Alventosa-deLara, E.; Barredo-Damas, S.; Zuriaga-Agustí, E.; AlcainaMiranda, M.I.; Iborra-Clar, M.I.: Ultrafiltration ceramic membrane performance during the treatment of model solutions containing dye and salt. Sep. Purif. Technol. 129, 96–105 (2014)CrossRefGoogle Scholar
  20. 20.
    Szpyrkowicz, L.; Juzzolino, C.; Kaul, S.N.: A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and Fenton reagent. Water Res. 35, 2129–2136 (2001)CrossRefGoogle Scholar
  21. 21.
    Senobari, S.; Nezamzadeh-Ejhieh, A.: A comprehensive study on the photocatalytic activity of coupled copper oxide-cadmium sulfide nanoparticles. Spectrochim. Acta A Mol. 196, 334–343 (2018)CrossRefGoogle Scholar
  22. 22.
    Jiang, J.; Pang, S.-Y.; Ma, J.: Oxidation of triclosan by permanganate (Mn (VII)): importance of ligands and in situ formed manganese oxides. Environ. Sci. Technol. 43, 8326–8331 (2009)CrossRefGoogle Scholar
  23. 23.
    Contant, R.; Abbessi, M.; Canny, J.; Belhouari, A.; Keita, B.; Nadjo, L.: Iron-Substituted dawson-type tungstodiphosphates: synthesis, characterization, and single or multiple initial electronation due to the substituent nature or position. Inorg. Chem. 36, 4961–4967 (1997)CrossRefGoogle Scholar
  24. 24.
    Contant, R.: Potassium octadecatungstodiphosphates (V) and related lacunary compounds. Inorg. Synth. 27, 104–111 (1990)Google Scholar
  25. 25.
    Contant, R.; Ciabrini, J.P.: Préparation et propriétés des solutions de quelques hétéropolyanions lacunaires dérivés des 18-tungsto-2- phosphates (isomères \(\alpha \) et \(\beta )\). J. Chem. Res. 2601–2609 (1977)Google Scholar
  26. 26.
    Rocchiccioli-Deltcheff, C.; Thouvenot, R.: Vibrational studies of heteropolyanions related to \(\alpha \text{-P }_{2}\text{ W }_{18}\text{ O }_{62}^{6-}\). Spectrosc. Lett. 12, 127–138 (1979)CrossRefGoogle Scholar
  27. 27.
    Rocchiccioli–Deltcheff, C.; Thouvenot, R.; Franck, R.: Spectres i. r. et Raman d’hétéropolyaions \(\alpha --\text{ XM }_{12}\text{ O }_{40}^\text{ n } \) de structure de type Keggin \((\text{ X=B }^{\rm III}, \text{ Si }^{\rm IV}, \text{ Ge }^{\rm IV}, \text{ P }^{\rm V}, \text{ As }^{\rm Vet} \text{ M }= \text{ W }^{\rm VI }\text{ et } \text{ MO }^{\rm VI})\). Spectrochim. Acta A 32, 587–597 (1976)CrossRefGoogle Scholar
  28. 28.
    Graham, C.R.; Finke, R.G.: The classic Wells–Dawson polyoxometalate, \(\text{ K }_{6}[\text{ r-P }_{2}\text{ W }_{18}\text{ O6 }_{2}]\text{14H }_{2}\text{ O }\). Answering an 88 year-old question: what is its preferred, optimum synthesis? Inorg. Chem. 47, 3679–3686 (2008)CrossRefGoogle Scholar
  29. 29.
    Rusu, M.; Marcu, G.; Rusu, D.; Roṣu, C.; Tomṣa, A.-R.: Uranium (IV) polyoxotungstophosphates. J. Radioanal. Nucl. Ch. 242, 467–472 (1999)CrossRefGoogle Scholar
  30. 30.
    Xueyu, Q.; Xia, T.; Qingyin, W.; Zhiqi, He; Fahe, C.; Wenfu, Y.: Synthesis and electrochemical properties of substituted heteropoly acid with Dawson structure \(\text{ H }_{7}[\text{ In }(\text{ H }_{2}\text{ O })\text{ P }_{2}\text{ W }_{17}\text{ O }_{61}]\cdot \text{23H }_{2}\text{ O }\). Dalton Trans. 41, 9897–9900 (2012)CrossRefGoogle Scholar
  31. 31.
    Shojaei, A.F.; Rezvani, M.A.; Heravi, M.: A green, reusable and highly efficient solid acid catalyst for the oxidation of aldehydes to the corresponding carboxylic acids using \(\text{ H }_{2}\text{ O }_{2} \text{ and } \text{ KMnO }_{4}:\text{ H }_{5}\text{ PV }_{2}\text{ Mo }_{10}\text{ O }_{40 }\)(10-molybdo-2-vanadophosphoric heteropolyacid). J. Serb. Chem. Soc. 76, 1513–1522 (2011)CrossRefGoogle Scholar
  32. 32.
    Troupis, A.; Triantis, T.M.; Gkika, E.; Hiskia, A.; Papaconstantinou, E.: Photocatalytic reductive-oxidative degradation of Acid Orange 7 by polyoxometalates. Appl. Catal. B. Environ. 86, 98–107 (2009)CrossRefGoogle Scholar
  33. 33.
    Ajoudanian, N.; Nezamzadeh-Ejhieh, A.: Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin. Mater. Sci. Semicond. Proc. 36, 162–169 (2015)CrossRefGoogle Scholar
  34. 34.
    Aleboyeh, A.; Olya, M.E.; Aleboyeh, H.: Oxidative treatment of azo dyes in aqueous solution by potassium permanganate. J. Hazard Mater. 162, 1530–1535 (2009)CrossRefGoogle Scholar
  35. 35.
    Olya, M.E.; Aleboyeh, H.; Aleboyeh, A.: Decomposition of a diazo dye in aqueous solutions by \(\text{ KMnO }_{4}/\text{ UV }/\text{ H }_{2}\text{ O }_{2}\) process. Prog. Color. Colo. Coat. 5, 41–46 (2012)Google Scholar
  36. 36.
    Bu, L.; Shi, Z.; Zhou, S.: Enhanced degradation of Orange G by permanganate with the employment of iron anode. Environ. Sci. Pollut. Res. 24, 388–394 (2017)CrossRefGoogle Scholar
  37. 37.
    Nezamzadeh-Ejhieh, A.; Karimi-Shamsabadi, M.: Comparison of photocatalytic efficiency of supported CuO onto micro and nano particles of zeolite X in photodecolorization of Methylene blue and Methyl orange aqueous mixture. Appl. Catal. A Gen. 477, 83–92 (2014)CrossRefGoogle Scholar
  38. 38.
    Baddenapalli, T.; Gandu, V.: Oxidative spectrophotometric determination of drugs using Kmno\(_{4}\) and methyl orange as dye. W. J. Pharmacy. Pharm. Sci. 4, 869–880 (2015)Google Scholar
  39. 39.
    Nisar, M.; Nosheen, S.; Noreen, A.; Majeed, I.; Saleem, A.; Sheikh, M.A.: Comparison of various oxidative treatments for removal of reactive black CNN. Afr J. Environ. Sci. Techno. 5, 916–923 (2011)Google Scholar
  40. 40.
    Xu, X.-R.; Li, H.-B.; Wang, W.-H.; Gu, J.-D.: Decolorization of dyes and textile wastewater by potassium permanganate. Chemosphere 59, 893–898 (2005)CrossRefGoogle Scholar
  41. 41.
    Han, Q.; Dong, W.; Wang, H.; Liu, T.; Sun, F.; Ying, Y.; Yan, X.: Effects of coexisting anions on decolorization of azo dye X-3B by ferrate (VI) and a comparative study between ferrate (VI) and potassium permanganate. Sep. Purif. Technol. 108, 74–82 (2013)CrossRefGoogle Scholar
  42. 42.
    Guoting, L.; Wang, N.; Liu, B.; Zhang, X.: Decolorization of azo dye Orange II by ferrate(VI)-hypochlorite liquid mixture, potassium ferrate(VI) and potassium permanganate. Desalination 249, 936–941 (2009)CrossRefGoogle Scholar
  43. 43.
    Reza, K.M.; Kurny, A.; Gulshan, F.: Photocatalytic degradation of methylene blue by magnetite+H\(_{2}\)O\(_{2}\) + UV process. Int. J. Env. Sci. Dev. 7, 325–329 (2016)CrossRefGoogle Scholar
  44. 44.
    Xu, G.R.; Zhang, Y.P.; Li, G.B.: Degradation of azo dye active brilliant red X-3B by composite ferrate solution. J. Hazard Mater. 161, 1299–1305 (2009)CrossRefGoogle Scholar
  45. 45.
    Tian, S.H.; Tu, Y.T.; Chen, D.S.; Chen, X.; Xiong, Y.: Degradation of acid Orange II at neutral pH using Fe\(^{2}\)(MoO\(_{4})^{3}\) as a heterogeneous Fenton-like catalyst. Chem. Eng J. 169, 31–37 (2011)CrossRefGoogle Scholar
  46. 46.
    Troupis, A.; Gkika, E.; Triantis, T.; Hiskia, A.; Papaconstantinou, E.: Photocatalytic reductive destruction of azo dyes by polyoxometallates: Naphthol blue black. J. Photochem. Photobiol. A: Chem. 188, 272–278 (2007)CrossRefGoogle Scholar
  47. 47.
    Esmaili-Hafshejani, J.; Nezamzadeh-Ejhieh, A.: Increased photocatalytic activity of Zn(II)/Cu(II) oxides and sulfides by coupling and supporting them onto clinoptilolite nanoparticles in the degradation of benzophenone aqueous solution. J. Hazard. Mater 316, 194–203 (2016)CrossRefGoogle Scholar
  48. 48.
    Domínguez, J.R.; Beltrán, J.; Rodríguez, O.: Vis and UV photocatalytic detoxification methods (using TiO\(_{2}\), TiO\(_{2}\)/H\(_{2}\)O\(_{2}\), TiO\(_{2}\)/O\(_{3}\), TiO\(_{2}\)/S\(_{2}\)O\(_{28}\), O\(_{3}\), H\(_{2}\)O\(_{2}\), S\(_{2}\)O\(_{28}\), Fe\(^{3+}\)/H\(_{2}\)O\(_{2 }\)and Fe\(^{3+}\)/H\(_{2}\)O\(_{2 }\)/ C\(_{2}\)O\(_{24)}\) for dyes treatment. Catal. Today 101, 389–395 (2005)CrossRefGoogle Scholar
  49. 49.
    Shams-Ghahfarokhi, Z.; Nezamzadeh-Ejhieh, A.: As-synthesized ZSM-5 zeolite as a suitable support for increasing the photoactivity of semiconductors in a typical photodegradation process. Mater. Sci. Semicond. Proc. 39, 265–275 (2015)CrossRefGoogle Scholar
  50. 50.
    Tang, C.; Chen, V.: The photocatalytic degradation of reactive black 5 using TiO\(_{2}\)/UV in an annular photoreactor. Water Res. 38, 2775–2781 (2004)CrossRefGoogle Scholar
  51. 51.
    Perkins, W.S.; Walsh, W.K.; Reed, E.; Namboodri, C.G.: A demonstration of reuse of spent dyebath water following color removal with ozone textile. Chem. Color. 28, 31–37 (1995)Google Scholar
  52. 52.
    Muthukumar, M.; Sargunamani, D.; Selvakumar, N.; Nedumaran, D.: Effect of salt additives on decolouration of Acid Black 1 dye effluent by ozonation. Indian J. Chem. Technol. 11, 612–616 (2004)Google Scholar
  53. 53.
    Nezamzadeh-Ejhieh, A.; Ghanbari-Mobarakeh, Z.: Heterogeneous photodegradation of 2,4-dichlorophenol using FeO doped onto nano-particles of zeolite P. J. Ind. Eng. Chem. 21, 668–676 (2015)CrossRefGoogle Scholar
  54. 54.
    Derikvandi, H.; Nezamzadeh-Ejhieh, A.: Designing of experiments for evaluating the interactions of influencing factors on the photocatalytic activity of NiS and SnS2: Focus on coupling, supporting and nanoparticles. J. Colloid Interf. Sci. 490, 628–641 (2017)CrossRefGoogle Scholar
  55. 55.
    Senobari, S.; Nezamzadeh-Ejhieh, A.: A comprehensive study on the enhanced photocatalytic activity of CuO–NiO nanoparticles: designing the experiments. J. Mol. Liq. 261, 208–217 (2018)CrossRefGoogle Scholar
  56. 56.
    Shrinivas, G.; Uma, C.: An alternate green route to synthesis of mono and diesters using solid acid catalysts. Res. J. Chem. Sci. 5, 48–58 (2015)Google Scholar
  57. 57.
    Minna, Cb; Lin, J.; Lü, J.; You, Y.; Liu, T.; Cao, R.: Development of a polyoxometallate-based photocatalyst assembled with cucurbit [6] uril via hydrogen bonds for azo dyes degradation. J. Hazard. Mater 186, 948–951 (2011)CrossRefGoogle Scholar
  58. 58.
    Heravia, M.M.; Derikvand, F.; Bamoharram, F.F.: Highly efficient, four-component one-pot synthesis of tetrasubstituted imidazoles using Keggin-type heteropolyacids as green and reusable catalysts. J. Mol. Catal. A Chem. 263, 112–114 (2007)CrossRefGoogle Scholar
  59. 59.
    Mahmoodi, N.M.; Oveisi, M.; Asli, M.A.; Rezvani, M.A.; Valipour, A.: Bi-amino surface functionalized polyoxometalate nanocomposite as an environmentally friendly catalyst. Synthesis and dye degradation. Water Sci. Technol. 75, 2381–2389 (2017)CrossRefGoogle Scholar
  60. 60.
    Gharib, A.; Hashemipour Khorasani, B.R.; Jahangir, M.; Roshani, M.; Bakhtiari, L.; Mohadeszadeh, S.; Ahmadi, S.: Preyssler heteropolyacid supported on nano-SiO\(_{2}\), H14[NaP\(_{5}\)W\(_{30}\)O\(_{110}\)]/SiO\(_{2}\): a green and reusable catalyst in the synthesis of polysubstituted quinolones. Bulg. Chem. Commun. 46, 223–232 (2014)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Laboratory of Organic Synthesis-Modeling and Optimization of Chemical Processes, Department of Process Engineering, Faculty of EngineeringBadji Mokhtar-Annaba UniversityAnnabaAlgeria

Personalised recommendations