Advertisement

A Linguistic Neutrosophic Multi-criteria Group Decision-Making Approach with EDAS Method

  • Ying-ying Li
  • Jian-qiang Wang
  • Tie-li Wang
Research Article - Systems Engineering
  • 33 Downloads

Abstract

This study develops an approach that incorporates power aggregation operators with the evaluation based on distance from average solution (EDAS) method under linguistic neutrosophic situations to solve fuzzy multi-criteria group decision-making problems. Firstly, the existing operational laws and comparison methods of linguistic neutrosophic numbers (LNNs) are analysed. Secondly, the distance measurement between two LNNs is defined. Thirdly, the power-weighted averaging operator and the power-weighted geometric operator with LNNs are developed to support the decision makers’ evaluation information. The models to derive the criteria weights are also constructed based on the proposed distance measurements. Finally, the EDAS method is extended to resolve group decision-making problems in the linguistic neutrosophic environment. An illustrative example of the property management company selection is given to verify the effectiveness and practicality of the proposed approach.

Keywords

Multi-criteria group decision-making Linguistic neutrosophic numbers Distance measurements Power aggregation operator Evaluation based on distance from average solution method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank the editor in chief and the anonymous referees for their insightful and constructive comments and suggestions, which have significantly improved this paper. This work is supported by the National Natural Science Foundation of China (No. 71571193).

References

  1. 1.
    Yan, H.; Ma, T.; Huynh, V.N.: On qualitative multi-attribute group decision making and its consensus measure: a probability based perspective. Omega 70, 94–117 (2017)CrossRefGoogle Scholar
  2. 2.
    Bordogna, G.; Fedrizzi, M.; Pasi, G.: A linguistic modeling of consensus in group decision making based on OWA operators. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 27(1), 126–133 (1997)CrossRefGoogle Scholar
  3. 3.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 8(3), 199–249 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Tian, Z.; Wang, J.; Wang, J.: An improved MULTIMOORA approach for multi-criteria decision-making based on interdependent inputs of simplified neutrosophic linguistic information. Neural Comput. Appl. 28(Suppl 1), S585–S597 (2017)CrossRefGoogle Scholar
  5. 5.
    Wang, J.Q.; Peng, J.J.; Zhang, H.Y.; et al.: An uncertain linguistic multi-criteria group decision-making method based on a cloud model. Group Decis. Negot. 24(1), 171–192 (2015)CrossRefGoogle Scholar
  6. 6.
    Smarandache, F.: A Unifying Field in Logics: Neutrosophy, Neutrosophic Probability, Set and Logic. American Research Press, Rehoboth (1999)zbMATHGoogle Scholar
  7. 7.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)CrossRefzbMATHGoogle Scholar
  8. 8.
    Wang, H.; Smarandache, F.; Zhang, Y.; et al.: Single valued neutrosophic sets. Rev. Air Force Acad. 10, 10–14 (2009)zbMATHGoogle Scholar
  9. 9.
    Ye, J.: Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. Int. J. Gen. Syst. 42(4), 386–394 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Tian, Z.P.; Wang, J.; Wang, J.Q.; et al.: Simplified neutrosophic linguistic multi-criteria group decision-making approach to green product development. Group Decis. Negot. 26(3), 597–627 (2017)CrossRefGoogle Scholar
  11. 11.
    Wang, Y.; Wang, J.Q.: Fuzzy stochastic multi-criteria decision-making methods with interval neutrosophic probability based on regret theory. J. Intell. Fuzzy Syst. (2018).  https://doi.org/10.3233/JIFS-17622
  12. 12.
    Wu, X.H.; Wang, J.Q.; Peng, J.J.: A novel group decision-making method with probability hesitant interval neutrosophic set and its application in middle level manager’s selection. Int. J. Uncertain. Quant. 8(4), 291–319 (2018)CrossRefGoogle Scholar
  13. 13.
    Liang, R.X.; Wang, J.Q.; Zhang, H.Y.: A multi-criteria decision-making method based on single-valued trapezoidal neutrosophic preference relations with complete weight information. Neural Comput. Appl. (2017).  https://doi.org/10.1007/s00521-017-2925-8
  14. 14.
    Biswas, P.; Pramanik, S.; Giri, B.C.: TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. Neural Comput. Appl. 27(3), 727–737 (2016)CrossRefGoogle Scholar
  15. 15.
    Huang, H.: New distance measure of single—neutrosophic sets and its application. Int. J. Intell. Syst. 31(10), 1021–1032 (2016)CrossRefGoogle Scholar
  16. 16.
    Ye, J.: Single-valued neutrosophic similarity measures based on cotangent function and their application in the fault diagnosis of steam turbine. Soft Comput. 21(3), 817–825 (2017)CrossRefzbMATHGoogle Scholar
  17. 17.
    Ye, J.: Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses. Artif. Intell. Med. 63(3), 171–179 (2015)CrossRefGoogle Scholar
  18. 18.
    Zhang, H.; Ji, P.; Wang, J.; et al.: An improved weighted correlation coefficient based on integrated weight for interval neutrosophic sets and its application in multi-criteria decision-making problems. Int. J. Comput. Intell. Syst. 8(6), 1027–1043 (2015)CrossRefGoogle Scholar
  19. 19.
    Tian, Z.; Zhang, H.; Wang, J.; et al.: Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets. Int. J. Syst. Sci. 47(15), 3598–3608 (2015)CrossRefzbMATHGoogle Scholar
  20. 20.
    Wu, X.; Wang, J.; Peng, J.; et al.: Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems. Int. J. Fuzzy Syst. 18(6), 1104–1116 (2017)CrossRefGoogle Scholar
  21. 21.
    Li, Y.Y.; Zhang, H.Y.; Wang, J.Q.: Linguistic neutrosophic sets and their application in multicriteria decision-making problems. Int. J. Uncertain. Quant. 7(2), 135–154 (2017)CrossRefGoogle Scholar
  22. 22.
    Fang, Z.; Ye, J.: Multiple attribute group decision-making method based on linguistic neutrosophic numbers. Symmetry 9(7), 1–12 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sudharsan, S.; Ezhilmaran, D.: Weighted arithmetic average operator based on interval-valued intuitionistic fuzzy values and their application to multi criteria decision making for investment. J. Inf. Optim. Sci. 37(2), 247–260 (2016)MathSciNetGoogle Scholar
  24. 24.
    Wang, J.Q.; Han, Z.Q.; Zhang, H.Y.: Multi-criteria group decision-making method based on intuitionistic interval fuzzy information. Group Decis. Negot. 23(4), 715–733 (2014)CrossRefGoogle Scholar
  25. 25.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)CrossRefzbMATHGoogle Scholar
  26. 26.
    Kacprzyk, J.; Zadrożny, S.: Linguistic summarization of the contents of Web server logs via the Ordered Weighted Averaging (OWA) operators. Fuzzy Sets Syst. 285(9), 182–198 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zhou, L.G.; Chen, H.Y.: Continuous generalized OWA operator and its application to decision making. Fuzzy Sets Syst. 168(1), 18–34 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Liu, P.; Teng, F.: Multiple criteria decision making method based on normal interval—intuitionistic fuzzy generalized aggregation operator. Complexity 21(5), 277–290 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ji, P.; Wang, J.; Zhang, H.Y.: Frank prioritized Bonferroni mean operator with single-valued neutrosophic sets and its application in selecting third party logistics. Neural Comput. Appl. 30(3), 799–823 (2018)CrossRefGoogle Scholar
  30. 30.
    Tian, Z.P.; Wang, J.; Wang, J.Q.; et al.: Multicriteria decision—approach based on gray linguistic weighted Bonferroni mean operator. Int. Trans. Oper. Res. 25(5), 1635–1658 (2018)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Yager, R.R.: The power average operator. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 31(6), 724–731 (2001)CrossRefGoogle Scholar
  32. 32.
    Peng, J.; Wang, J.; Wu, X.; et al.: Multi-valued neutrosophic sets and power aggregation operators with their applications in multi-criteria group decision-making problems. Int. J. Comput. Intell. Syst. 8(2), 345–363 (2015)CrossRefGoogle Scholar
  33. 33.
    Yu, D.J.: Intuitionistic fuzzy geometric Heronian mean aggregation operators. Appl. Soft Comput. 13(2), 1235–1246 (2013)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Wang, J.; Wang, J.Q.; Tian, Z.P.; et al.: A multi-hesitant fuzzy linguistic multi-criteria decision-making approach for logistics outsourcing with incomplete weight information. Int. Trans. Oper. Res. 25(3), 831–856 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Yager, R.R.: Prioritized aggregation operators. Int. J. Approx. Reason. 48(48), 263–274 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Tian, Z.P.; Wang, J.; Zhang, H.Y.; et al.: Multi-criteria decision-making based on generalized prioritized aggregation operators under simplified neutrosophic uncertain linguistic environment. Int. J. Mach. Learn. Cybern. 9(3), 523–539 (2018)CrossRefGoogle Scholar
  37. 37.
    Gomes, L.; Lima, M.: Todim: Basic and application to multicriteria ranking of projects with environmental impacts. Found. Comput. Decis. Sci. 16, 113–127 (1992)zbMATHGoogle Scholar
  38. 38.
    Yu, S.M.; Wang, J.; Wang, J.Q.: An extended TODIM approach with intuitionistic linguistic numbers. Int. Trans. Oper. Res. 25(3), 781–805 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Hwang, C.L.; Yoon, K.P.: Multiple Attribute Decision Making. Springer, Berlin (1981)CrossRefzbMATHGoogle Scholar
  40. 40.
    Goumas, M.; Lygerou, V.: An extension of the PROMETHEE method for decision making in fuzzy environment: ranking of alternative energy exploitation projects. Eur. J. Oper. Res. 123(3), 606–613 (2000)CrossRefzbMATHGoogle Scholar
  41. 41.
    Govindan, K.; Jepsen, M.B.: ELECTRE: a comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 250(1), 1–29 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Shen, K.W.; Wang, J.Q.: Z-VIKOR method based on a new weighted comprehensive distance measure of Z-number and its application. IEEE Trans. Fuzzy Syst. (2018).  https://doi.org/10.1109/TFUZZ.2018.2816581
  43. 43.
    Zhou, H.; Wang, J.; Zhang, H.: Stochastic multicriteria decision—approach based on SMAA-ELECTRE with extended gray numbers. Int. Trans. Oper. Res. (2016).  https://doi.org/10.1111/itor.12380
  44. 44.
    Ji, P.; Wang, J.Q.; Zhang, H.Y.: Selecting an outsourcing provider based on the combined MABAC-ELECTRE method using single-valued neutrosophic linguistic sets. Comput. Ind. Eng. 120, 429–441 (2018)CrossRefGoogle Scholar
  45. 45.
    Hu, J.; Yang, Y.; Zhang, X.; et al.: Similarity and entropy measures for hesitant fuzzy sets. Int. Trans. Oper. Res. 25(3), 857–886 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Keshavarz Ghorabaee, M.; Zavadskas, E.K.; Olfat, L.; et al.: Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (edas). Informatica 26(3), 435–451 (2015)CrossRefGoogle Scholar
  47. 47.
    Ghorabaee, M.K.; Zavadskas, E.K.; Amiri, M.; et al.: Extended EDAS method for fuzzy multi-criteria decision-making: an application to supplier selection. Int. J. Comput. Commun. Control 11(3), 358–371 (2016)CrossRefGoogle Scholar
  48. 48.
    Opricovic, S.; Tzeng, G.H.: Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 156(2), 445–455 (2004)CrossRefzbMATHGoogle Scholar
  49. 49.
    Xu, Z.: A method based on linguistic aggregation operators for group decision making with linguistic preference relations. Inf. Sci. 166(1–4), 19–30 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Wu, J.; Wang, J.; Wang, J.; et al.: Multi-criteria decision-making methods based on the Hausdorff distance of hesitant fuzzy linguistic numbers. Soft Comput. 20(4), 1621–1633 (2016)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.School of BusinessCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Management SchoolUniversity of South ChinaHengyangPeople’s Republic of China

Personalised recommendations