Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6271–6284 | Cite as

A Model Based on Bootstrapped Neural Networks for Modeling the Removal of Organic Compounds by Nanofiltration and Reverse Osmosis Membranes

  • Yamina Ammi
  • Latifa Khaouane
  • Salah Hanini
Research Article - Chemical Engineering
  • 27 Downloads

Abstract

The present paper illustrates the use of single neural networks (SNN) and bootstrap aggregated neural networks (BANN) for modeling the removal of organic compounds by nanofiltration and reverse osmosis. A set of 278 data points was used to build the SNN and BANN. Bootstrap aggregated neural networks are used to enhance the accuracy and robustness of neural network models built from a limited amount of training data. The training dataset is re-sampled using bootstrap re-sampling with replacement to form several sets of training data. For each set of training data, a neural network model is developed. The individual neural networks are then combined together to form a bootstrap aggregated neural network. Experimental removals were compared against calculated removals and excellent R correlation coefficients were found (0.9890, 0.9836, and 0.9841) for the training, test, and total dataset, respectively. The performance of the models (INN, BANN, and SNN) is shown that models built from BANN are more accurate and robust than those built from individual neural networks (INN) single neural networks (SNN).

Keywords

Bootstrap Neural networks Modeling Removal Organic compounds Membranes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Authors gratefully acknowledge the team of Laboratory of Biomaterials and Transport Phenomena, the University of Medea, and University Center of Relizane for their help throughout this project. The authors also thank the anonymous reviewers for their constructive comments which helped to improve the quality and presentation of this paper.

References

  1. 1.
    Lin, Y.-L.: Effects of organic, biological and colloidal fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes. J. Membr. Sci. 542, 342–351 (2017).  https://doi.org/10.1016/j.memsci.2017.08.023 CrossRefGoogle Scholar
  2. 2.
    Verliefde, A.R.; Heijman, S.G.; Cornelissen, E.R.; Amy, G.; Van der Bruggen, B.; van Dijk, J.C.: Influence of electrostatic interactions on the rejection with NF and assessment of the removal efficiency during NF/GAC treatment of pharmaceutically active compounds in surface water. Water Res. 41(15), 3227–3240 (2007).  https://doi.org/10.1016/j.watres.2007.05.022 CrossRefGoogle Scholar
  3. 3.
    Verliefde, A.R.D.; Cornelissen, E.R.; Heijman, S.G.J.; Verberk, J.Q.J.C.; Amy, G.L.; Van der Bruggen, B.; van Dijk, J.C.: The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions with nanofiltration. J. Membr. Sci. 322(1), 52–66 (2008).  https://doi.org/10.1016/j.memsci.2008.05.022 CrossRefGoogle Scholar
  4. 4.
    Gur-Reznik, S.; Koren-Menashe, I.; Heller-Grossman, L.; Rufel, O.; Dosoretz, C.G.: Influence of seasonal and operating conditions on the rejection of pharmaceutical active compounds by RO and NF membranes. Desalination 277(1–3), 250–256 (2011).  https://doi.org/10.1016/j.desal.2011.04.029 CrossRefGoogle Scholar
  5. 5.
    Ammi, Y.; Khaouane, L.; Hanini, S.: Prediction of the rejection of organic compounds (neutral and ionic) by nanofiltration and reverse osmosis membranes using neural networks. Korean J. Chem. Eng. 32(11), 2300–2310 (2015).  https://doi.org/10.1007/s11814-015-0086-y CrossRefGoogle Scholar
  6. 6.
    Khaouane, L.; Ammi, Y.; Hanini, S.: Modeling the retention of organic compounds by nanofiltration and reverse osmosis membranes using bootstrap aggregated neural networks. Arab. J. Sci. Eng. 42(4), 1443–1453 (2017).  https://doi.org/10.1007/s13369-016-2320-2 CrossRefGoogle Scholar
  7. 7.
    Libotean, D.; Giralt, J.; Rallo, R.; Cohen, Y.; Giralt, F.; Ridgway, H.F.; Rodriguez, G.; Phipps, D.: Organic compounds passage through RO membranes. J. Membr. Sci. 313(1–2), 23–43 (2008).  https://doi.org/10.1016/j.memsci.2007.11.052 CrossRefGoogle Scholar
  8. 8.
    Yangali-Quintanilla, V.; Kennedy, M.; Amy, G.; Kim, T.U.: Modeling of RO/NF membrane rejections of PhACs and organic compounds: a statistical analysis. Drink. Water Eng. Sci. 1(1), 7–15 (2008)CrossRefGoogle Scholar
  9. 9.
    Yangali-Quintanilla, V.; Verliefde, A.; Kim, T.U.; Sadmani, A.; Kennedy, M.; Amy, G.: Artificial neural network models based on QSAR for predicting rejection of neutral organic compounds by polyamide nanofiltration and reverse osmosis membranes. J. Membr. Sci. 342(1–2), 251–262 (2009).  https://doi.org/10.1016/j.memsci.2009.06.048 CrossRefGoogle Scholar
  10. 10.
    Yangali-Quintanilla, V.; Sadmani, A.; McConville, M.; Kennedy, M.; Amy, G.: A QSAR model for predicting rejection of emerging contaminants (pharmaceuticals, endocrine disruptors) by nanofiltration membranes. Water Res. 44(2), 373–384 (2010).  https://doi.org/10.1016/j.watres.2009.06.054 CrossRefGoogle Scholar
  11. 11.
    Sadmani, A.H.M.A.; Andrews, R.C.; Bagley, D.M.: Impact of natural water colloids and cations on the rejection of pharmaceutically active and endocrine disrupting compounds by nanofiltration. J. Membr. Sci. 450, 272–281 (2014).  https://doi.org/10.1016/j.memsci.2013.09.017 CrossRefGoogle Scholar
  12. 12.
    Sadmani, A.H.M.A.; Andrews, R.C.; Bagley, D.M.: Nanofiltration of pharmaceutically active and endocrine disrupting compounds as a function of compound interactions with DOM fractions and cations in natural water. Sep. Purif. Technol. 122, 462–471 (2014).  https://doi.org/10.1016/j.seppur.2013.12.003 CrossRefGoogle Scholar
  13. 13.
    Arash, S.; Christopher, B.: Application of quantitative structure-property relationships (QSPRs) to predict the rejection of organic solutes by nanofiltration. Sep. Purif. Technol. 118, 627–638 (2013)CrossRefGoogle Scholar
  14. 14.
    Flyborg, L.; Björlenius, B.; Ullner, M.; Persson, K.M.: A PLS model for predicting rejection of trace organic compounds by nanofiltration using treated wastewater as feed. Sep. Purif. Technol. 174, 212–221 (2017).  https://doi.org/10.1016/j.seppur.2016.10.029 CrossRefGoogle Scholar
  15. 15.
    Lin, W.; Jing, L.; Zhu, Z.; Cai, Q.; Zhang, B.: Removal of heavy metals from mining wastewater by Micellar-Enhanced Ultrafiltration (MEUF): experimental investigation and Monte Carlo-based artificial neural network modeling. Water Air Soil Pollut. 228(6), 206 (2017).  https://doi.org/10.1007/s11270-017-3386-5 CrossRefGoogle Scholar
  16. 16.
    Elmolla, E.S.; Chaudhuri, M.; Eltoukhy, M.M.: The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process. J. Hazard. Mater. 179(1), 127–134 (2010).  https://doi.org/10.1016/j.jhazmat.2010.02.068 CrossRefGoogle Scholar
  17. 17.
    Zhang, J.: Inferential estimation of polymer quality using bootstrap aggregated neural networks. Neural Netw. 12, 927–938 (1999)CrossRefGoogle Scholar
  18. 18.
    Tahir, M.F.; Tehzeeb ul, H.; Saqib, M.A.: Optimal scheduling of electrical power in energy-deficient scenarios using artificial neural network and Bootstrap aggregating. Int. J. Electr. Power Energy Syst. 83, 49–57 (2016).  https://doi.org/10.1016/j.ijepes.2016.03.046 CrossRefGoogle Scholar
  19. 19.
    Zhang, J.: Developing robust non-linear models through bootstrap aggregated neural networks. Neurocomputing 25, 93–113 (1999)CrossRefGoogle Scholar
  20. 20.
    Zhang, J.: Batch-to-batch optimal control of a batch polymerisation process based on stacked neural network models. Chem. Eng. Sci. 63, 1273–1281 (2008)CrossRefGoogle Scholar
  21. 21.
    Zhang, J.; Feng, Y.; Al-Mahrouqi, M.H.: Reliable optimal control of a fed-batch fermentation process using ant colony optimization and bootstrap aggregated neural network models. In: Valadi, J., Siarry, P. (eds.) Applications of Metaheuristics in Process Engineering, pp. 183–200. Springer International Publishing, Cham (2014)Google Scholar
  22. 22.
    Zhang, J.; Xu, Q.J.Y.: Inferential estimation of polymer melt index using sequentially trained bootstrap aggregated. Neural Netw. 29(4), 442–448 (2006)MathSciNetGoogle Scholar
  23. 23.
    Mohammed, K.-J.R.; Zhang, J.: Reliable optimisation control of a reactive polymer composite moulding process using ant colony optimisation and bootstrap aggregated neural networks. Neural Comput. Appl. 23(7), 1891–1898 (2013).  https://doi.org/10.1007/s00521-012-1273-y CrossRefGoogle Scholar
  24. 24.
    Al-Mahrouqi, M.H.; Zhang, J.: Reliable optimal control of a fed-batch bio-reactor using ant colony optimization and bootstrap aggregated neural networks. IFAC Proc. Vol. 41(2), 8407–8412 (2008).  https://doi.org/10.3182/20080706-5-KR-1001.01421 CrossRefGoogle Scholar
  25. 25.
    Osuolale, F.N.; Zhang, J.: Multi-objective optimisation of atmospheric crude distillation system operations based on bootstrap aggregated neural network models. In: Gernaey, K.V., Huusom, J.K., Gani, R. (eds.) Computer Aided Chemical Engineering, vol. 37, pp. 671–676. Elsevier, New York (2015)Google Scholar
  26. 26.
    Sharma, S.K.; Tiwari, K.N.: Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment. J. Hydrol. 374(3), 209–222 (2009).  https://doi.org/10.1016/j.jhydrol.2009.06.003 CrossRefGoogle Scholar
  27. 27.
    Zhang, Z.; Wang, T.; Liu, X.: Melt index prediction by aggregated RBF neural networks trained with chaotic theory. Neurocomputing 131, 368–376 (2014).  https://doi.org/10.1016/j.neucom.2013.10.006 CrossRefGoogle Scholar
  28. 28.
    Bai, Z.; Li, F.; Zhang, J.; Oko, E.; Wang, M.; Xiong, Z.; Huang, D.: Modelling of a post-combustion \(\text{ CO }_{2}\) capture process using bootstrap aggregated extreme learning machines. In: Kravanja, Z., Bogataj, M. (eds.) Computer Aided Chemical Engineering, vol. 38, pp. 2007–2012. Elsevier, New York (2016)Google Scholar
  29. 29.
    Tang, C.Y.; Kwon, Y.-N.; Leckie, J.O.: Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers. Desalination 242(1–3), 168–182 (2009).  https://doi.org/10.1016/j.desal.2008.04.004 CrossRefGoogle Scholar
  30. 30.
    Dolar, D.; Vuković, A.; Ašperger, D.; Košutić, K.: Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes. J. Env. Sci. 23(8), 1299–1307 (2011).  https://doi.org/10.1016/S1001-0742(10)60545-1 CrossRefGoogle Scholar
  31. 31.
    Dolar, D.; Ignjatic Zokic, T.; Kosutic, K.; Asperger, D.; Mutavdzic Pavlovic, D.: RO/NF membrane treatment of veterinary pharmaceutical wastewater: comparison of results obtained on a laboratory and a pilot scale. Environ. Sci. Pollut. Res. Int. 19(4), 1033–1042 (2012).  https://doi.org/10.1007/s11356-012-0782-7 CrossRefGoogle Scholar
  32. 32.
    Dolar, D.; Kosutic, K.; Asperger, D.: Influence of adsorption of pharmaceuticals onto RO/NF membranes on their removal from water. Water Air Soil Pollut Int. J. Environ. Pollut. 224(1), 1–13 (2013)Google Scholar
  33. 33.
    Dolar, D.; Košutić, K.; Periša, M.; Babić, S.: Photolysis of enrofloxacin and removal of its photodegradation products from water by reverse osmosis and nanofiltration membranes. Sep. Purif. Technol. 115(13), 1–8 (2013).  https://doi.org/10.1016/j.seppur.2013.04.042 CrossRefGoogle Scholar
  34. 34.
    Santos, J.L.C.; de Beukelaar, P.; Vankelecom, I.F.J.; Velizarov, S.; Crespo, J.G.: Effect of solute geometry and orientation on the rejection of uncharged compounds by nanofiltration. Sep. Purif. Technol. 50(1), 122–131 (2006).  https://doi.org/10.1016/j.seppur.2005.11.015 CrossRefGoogle Scholar
  35. 35.
    Mandal, S.; Sivaprasad, P.V.; Venugopal, S.; Murthy, K.P.N.; Raj, B.: Artificial neural network modeling of composition-process-property correlations in austenitic stainless steels. Mater. Sci. Eng. A 485(1), 571–580 (2008).  https://doi.org/10.1016/j.msea.2007.08.019 CrossRefGoogle Scholar
  36. 36.
    Liu, G.; Jia, L.; Kong, B.; Guan, K.; Zhang, H.: Artificial neural network application to study quantitative relationship between silicide and fracture toughness of Nb-Si alloys. Mater. Des. 129, 210–218 (2017)CrossRefGoogle Scholar
  37. 37.
    Efron, B.; Tibshirani, R.: An Introduction to Bootstrap. Chapman and Hall, London (1993)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Laboratory of Biomaterials and Transport Phenomena (LBMPT)University of MédéaMédéaAlgeria
  2. 2.University Center Ahmed Zabana RelizaneRelizaneAlgeria

Personalised recommendations