Skip to main content
Log in

A Model Based on Bootstrapped Neural Networks for Modeling the Removal of Organic Compounds by Nanofiltration and Reverse Osmosis Membranes

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present paper illustrates the use of single neural networks (SNN) and bootstrap aggregated neural networks (BANN) for modeling the removal of organic compounds by nanofiltration and reverse osmosis. A set of 278 data points was used to build the SNN and BANN. Bootstrap aggregated neural networks are used to enhance the accuracy and robustness of neural network models built from a limited amount of training data. The training dataset is re-sampled using bootstrap re-sampling with replacement to form several sets of training data. For each set of training data, a neural network model is developed. The individual neural networks are then combined together to form a bootstrap aggregated neural network. Experimental removals were compared against calculated removals and excellent R correlation coefficients were found (0.9890, 0.9836, and 0.9841) for the training, test, and total dataset, respectively. The performance of the models (INN, BANN, and SNN) is shown that models built from BANN are more accurate and robust than those built from individual neural networks (INN) single neural networks (SNN).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, Y.-L.: Effects of organic, biological and colloidal fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes. J. Membr. Sci. 542, 342–351 (2017). https://doi.org/10.1016/j.memsci.2017.08.023

    Article  Google Scholar 

  2. Verliefde, A.R.; Heijman, S.G.; Cornelissen, E.R.; Amy, G.; Van der Bruggen, B.; van Dijk, J.C.: Influence of electrostatic interactions on the rejection with NF and assessment of the removal efficiency during NF/GAC treatment of pharmaceutically active compounds in surface water. Water Res. 41(15), 3227–3240 (2007). https://doi.org/10.1016/j.watres.2007.05.022

    Article  Google Scholar 

  3. Verliefde, A.R.D.; Cornelissen, E.R.; Heijman, S.G.J.; Verberk, J.Q.J.C.; Amy, G.L.; Van der Bruggen, B.; van Dijk, J.C.: The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions with nanofiltration. J. Membr. Sci. 322(1), 52–66 (2008). https://doi.org/10.1016/j.memsci.2008.05.022

    Article  Google Scholar 

  4. Gur-Reznik, S.; Koren-Menashe, I.; Heller-Grossman, L.; Rufel, O.; Dosoretz, C.G.: Influence of seasonal and operating conditions on the rejection of pharmaceutical active compounds by RO and NF membranes. Desalination 277(1–3), 250–256 (2011). https://doi.org/10.1016/j.desal.2011.04.029

    Article  Google Scholar 

  5. Ammi, Y.; Khaouane, L.; Hanini, S.: Prediction of the rejection of organic compounds (neutral and ionic) by nanofiltration and reverse osmosis membranes using neural networks. Korean J. Chem. Eng. 32(11), 2300–2310 (2015). https://doi.org/10.1007/s11814-015-0086-y

    Article  Google Scholar 

  6. Khaouane, L.; Ammi, Y.; Hanini, S.: Modeling the retention of organic compounds by nanofiltration and reverse osmosis membranes using bootstrap aggregated neural networks. Arab. J. Sci. Eng. 42(4), 1443–1453 (2017). https://doi.org/10.1007/s13369-016-2320-2

    Article  Google Scholar 

  7. Libotean, D.; Giralt, J.; Rallo, R.; Cohen, Y.; Giralt, F.; Ridgway, H.F.; Rodriguez, G.; Phipps, D.: Organic compounds passage through RO membranes. J. Membr. Sci. 313(1–2), 23–43 (2008). https://doi.org/10.1016/j.memsci.2007.11.052

    Article  Google Scholar 

  8. Yangali-Quintanilla, V.; Kennedy, M.; Amy, G.; Kim, T.U.: Modeling of RO/NF membrane rejections of PhACs and organic compounds: a statistical analysis. Drink. Water Eng. Sci. 1(1), 7–15 (2008)

    Article  Google Scholar 

  9. Yangali-Quintanilla, V.; Verliefde, A.; Kim, T.U.; Sadmani, A.; Kennedy, M.; Amy, G.: Artificial neural network models based on QSAR for predicting rejection of neutral organic compounds by polyamide nanofiltration and reverse osmosis membranes. J. Membr. Sci. 342(1–2), 251–262 (2009). https://doi.org/10.1016/j.memsci.2009.06.048

    Article  Google Scholar 

  10. Yangali-Quintanilla, V.; Sadmani, A.; McConville, M.; Kennedy, M.; Amy, G.: A QSAR model for predicting rejection of emerging contaminants (pharmaceuticals, endocrine disruptors) by nanofiltration membranes. Water Res. 44(2), 373–384 (2010). https://doi.org/10.1016/j.watres.2009.06.054

    Article  Google Scholar 

  11. Sadmani, A.H.M.A.; Andrews, R.C.; Bagley, D.M.: Impact of natural water colloids and cations on the rejection of pharmaceutically active and endocrine disrupting compounds by nanofiltration. J. Membr. Sci. 450, 272–281 (2014). https://doi.org/10.1016/j.memsci.2013.09.017

    Article  Google Scholar 

  12. Sadmani, A.H.M.A.; Andrews, R.C.; Bagley, D.M.: Nanofiltration of pharmaceutically active and endocrine disrupting compounds as a function of compound interactions with DOM fractions and cations in natural water. Sep. Purif. Technol. 122, 462–471 (2014). https://doi.org/10.1016/j.seppur.2013.12.003

    Article  Google Scholar 

  13. Arash, S.; Christopher, B.: Application of quantitative structure-property relationships (QSPRs) to predict the rejection of organic solutes by nanofiltration. Sep. Purif. Technol. 118, 627–638 (2013)

    Article  Google Scholar 

  14. Flyborg, L.; Björlenius, B.; Ullner, M.; Persson, K.M.: A PLS model for predicting rejection of trace organic compounds by nanofiltration using treated wastewater as feed. Sep. Purif. Technol. 174, 212–221 (2017). https://doi.org/10.1016/j.seppur.2016.10.029

    Article  Google Scholar 

  15. Lin, W.; Jing, L.; Zhu, Z.; Cai, Q.; Zhang, B.: Removal of heavy metals from mining wastewater by Micellar-Enhanced Ultrafiltration (MEUF): experimental investigation and Monte Carlo-based artificial neural network modeling. Water Air Soil Pollut. 228(6), 206 (2017). https://doi.org/10.1007/s11270-017-3386-5

    Article  Google Scholar 

  16. Elmolla, E.S.; Chaudhuri, M.; Eltoukhy, M.M.: The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process. J. Hazard. Mater. 179(1), 127–134 (2010). https://doi.org/10.1016/j.jhazmat.2010.02.068

    Article  Google Scholar 

  17. Zhang, J.: Inferential estimation of polymer quality using bootstrap aggregated neural networks. Neural Netw. 12, 927–938 (1999)

    Article  Google Scholar 

  18. Tahir, M.F.; Tehzeeb ul, H.; Saqib, M.A.: Optimal scheduling of electrical power in energy-deficient scenarios using artificial neural network and Bootstrap aggregating. Int. J. Electr. Power Energy Syst. 83, 49–57 (2016). https://doi.org/10.1016/j.ijepes.2016.03.046

    Article  Google Scholar 

  19. Zhang, J.: Developing robust non-linear models through bootstrap aggregated neural networks. Neurocomputing 25, 93–113 (1999)

    Article  Google Scholar 

  20. Zhang, J.: Batch-to-batch optimal control of a batch polymerisation process based on stacked neural network models. Chem. Eng. Sci. 63, 1273–1281 (2008)

    Article  Google Scholar 

  21. Zhang, J.; Feng, Y.; Al-Mahrouqi, M.H.: Reliable optimal control of a fed-batch fermentation process using ant colony optimization and bootstrap aggregated neural network models. In: Valadi, J., Siarry, P. (eds.) Applications of Metaheuristics in Process Engineering, pp. 183–200. Springer International Publishing, Cham (2014)

    Google Scholar 

  22. Zhang, J.; Xu, Q.J.Y.: Inferential estimation of polymer melt index using sequentially trained bootstrap aggregated. Neural Netw. 29(4), 442–448 (2006)

    MathSciNet  Google Scholar 

  23. Mohammed, K.-J.R.; Zhang, J.: Reliable optimisation control of a reactive polymer composite moulding process using ant colony optimisation and bootstrap aggregated neural networks. Neural Comput. Appl. 23(7), 1891–1898 (2013). https://doi.org/10.1007/s00521-012-1273-y

    Article  Google Scholar 

  24. Al-Mahrouqi, M.H.; Zhang, J.: Reliable optimal control of a fed-batch bio-reactor using ant colony optimization and bootstrap aggregated neural networks. IFAC Proc. Vol. 41(2), 8407–8412 (2008). https://doi.org/10.3182/20080706-5-KR-1001.01421

    Article  Google Scholar 

  25. Osuolale, F.N.; Zhang, J.: Multi-objective optimisation of atmospheric crude distillation system operations based on bootstrap aggregated neural network models. In: Gernaey, K.V., Huusom, J.K., Gani, R. (eds.) Computer Aided Chemical Engineering, vol. 37, pp. 671–676. Elsevier, New York (2015)

    Google Scholar 

  26. Sharma, S.K.; Tiwari, K.N.: Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment. J. Hydrol. 374(3), 209–222 (2009). https://doi.org/10.1016/j.jhydrol.2009.06.003

    Article  Google Scholar 

  27. Zhang, Z.; Wang, T.; Liu, X.: Melt index prediction by aggregated RBF neural networks trained with chaotic theory. Neurocomputing 131, 368–376 (2014). https://doi.org/10.1016/j.neucom.2013.10.006

    Article  Google Scholar 

  28. Bai, Z.; Li, F.; Zhang, J.; Oko, E.; Wang, M.; Xiong, Z.; Huang, D.: Modelling of a post-combustion \(\text{ CO }_{2}\) capture process using bootstrap aggregated extreme learning machines. In: Kravanja, Z., Bogataj, M. (eds.) Computer Aided Chemical Engineering, vol. 38, pp. 2007–2012. Elsevier, New York (2016)

    Google Scholar 

  29. Tang, C.Y.; Kwon, Y.-N.; Leckie, J.O.: Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers. Desalination 242(1–3), 168–182 (2009). https://doi.org/10.1016/j.desal.2008.04.004

    Article  Google Scholar 

  30. Dolar, D.; Vuković, A.; Ašperger, D.; Košutić, K.: Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes. J. Env. Sci. 23(8), 1299–1307 (2011). https://doi.org/10.1016/S1001-0742(10)60545-1

    Article  Google Scholar 

  31. Dolar, D.; Ignjatic Zokic, T.; Kosutic, K.; Asperger, D.; Mutavdzic Pavlovic, D.: RO/NF membrane treatment of veterinary pharmaceutical wastewater: comparison of results obtained on a laboratory and a pilot scale. Environ. Sci. Pollut. Res. Int. 19(4), 1033–1042 (2012). https://doi.org/10.1007/s11356-012-0782-7

    Article  Google Scholar 

  32. Dolar, D.; Kosutic, K.; Asperger, D.: Influence of adsorption of pharmaceuticals onto RO/NF membranes on their removal from water. Water Air Soil Pollut Int. J. Environ. Pollut. 224(1), 1–13 (2013)

    Google Scholar 

  33. Dolar, D.; Košutić, K.; Periša, M.; Babić, S.: Photolysis of enrofloxacin and removal of its photodegradation products from water by reverse osmosis and nanofiltration membranes. Sep. Purif. Technol. 115(13), 1–8 (2013). https://doi.org/10.1016/j.seppur.2013.04.042

    Article  Google Scholar 

  34. Santos, J.L.C.; de Beukelaar, P.; Vankelecom, I.F.J.; Velizarov, S.; Crespo, J.G.: Effect of solute geometry and orientation on the rejection of uncharged compounds by nanofiltration. Sep. Purif. Technol. 50(1), 122–131 (2006). https://doi.org/10.1016/j.seppur.2005.11.015

    Article  Google Scholar 

  35. Mandal, S.; Sivaprasad, P.V.; Venugopal, S.; Murthy, K.P.N.; Raj, B.: Artificial neural network modeling of composition-process-property correlations in austenitic stainless steels. Mater. Sci. Eng. A 485(1), 571–580 (2008). https://doi.org/10.1016/j.msea.2007.08.019

    Article  Google Scholar 

  36. Liu, G.; Jia, L.; Kong, B.; Guan, K.; Zhang, H.: Artificial neural network application to study quantitative relationship between silicide and fracture toughness of Nb-Si alloys. Mater. Des. 129, 210–218 (2017)

    Article  Google Scholar 

  37. Efron, B.; Tibshirani, R.: An Introduction to Bootstrap. Chapman and Hall, London (1993)

    Book  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the team of Laboratory of Biomaterials and Transport Phenomena, the University of Medea, and University Center of Relizane for their help throughout this project. The authors also thank the anonymous reviewers for their constructive comments which helped to improve the quality and presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yamina Ammi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammi, Y., Khaouane, L. & Hanini, S. A Model Based on Bootstrapped Neural Networks for Modeling the Removal of Organic Compounds by Nanofiltration and Reverse Osmosis Membranes. Arab J Sci Eng 43, 6271–6284 (2018). https://doi.org/10.1007/s13369-018-3484-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3484-8

Keywords

Navigation