Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6261–6269 | Cite as

Producing Biodiesel from Waste Cooking Oil with Catalytic Membrane Reactor: Process Design and Sensitivity Analysis

  • Y. B. Abdurakhman
  • Z. A. Putra
  • M. R. Bilad
  • N. A. H. Nordin
  • M. D. H. Wirzal
  • O. Muraza
Research Article - Chemical Engineering
  • 17 Downloads

Abstract

Biodiesel demand increases steadily while using virgin oil as feedstock leads to food–energy competition. Application of conventional biodiesel process using waste cooking oil (WCO) as the alternative feedstock is limited due to the sensitivity of alkali catalysts to free fatty acids (FFA) and the need for glycerol and water washings. This work proposes and conceptually designs a catalytic membrane reactor process to overcome those mentioned limitations. Multiple components in the FFA and WCO were considered in the process design to better demonstrate practical situations and possible technical challenges. Its technical challenges and economic feasibility as well as sensitivities of key process parameters are also evaluated. Results show that the membrane reactor process has a high potential for commercial implementations and economically attractive because it avoids problems associated with the conventional process. Despite being the most sensitive parameter, FFA content of 30 wt% reduces the economic potential by only 5%, demonstrating the robustness of the developed CMR process. Better separation techniques and higher membrane selectivity toward biodiesel still need to be developed in the future to realize and improve the process.

Keywords

Biodiesel Membrane reactor Intensification Techno-economic Waste cooking oil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zabeti, M.; Wan Daud, W.M.A.; Aroua, M.K.: Activity of solid catalysts for biodiesel production: a review. Fuel Process. Technol. 90, 770–777 (2009).  https://doi.org/10.1016/j.fuproc.2009.03.010 CrossRefGoogle Scholar
  2. 2.
    Keskin, A.; Gürü, M.; Altiparmak, D.; Aydin, K.: Using of cotton oil soapstock biodiesel-diesel fuel blends as an alternative diesel fuel. Renew. Energy 33, 553–557 (2008).  https://doi.org/10.1016/j.renene.2007.03.025 CrossRefGoogle Scholar
  3. 3.
    Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C.: Use of vegetable oils as I.C. engine fuels–A review. Renew. Energy 29, 727–742 (2004).  https://doi.org/10.1016/j.renene.2003.09.008 CrossRefGoogle Scholar
  4. 4.
    Brennan, L.; Owende, P.: Biofuels from microalgae–A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14, 557–577 (2010).  https://doi.org/10.1016/j.rser.2009.10.009 CrossRefGoogle Scholar
  5. 5.
    Nurfitri, I.; Maniam, G.P.; Hindryawati, N.; Yusoff, M.M.; Ganesan, S.: Potential of feedstock and catalysts from waste in biodiesel preparation: A review. Energy Convers. Manag. 74, 395–402 (2013).  https://doi.org/10.1016/j.enconman.2013.04.042 CrossRefGoogle Scholar
  6. 6.
    Behzadi, S.; Farid, M.M.: Review: examining the use of different feedstock for the production of biodiesel. Asia Pac. J. Chem. Eng. 2, 480–486 (2007).  https://doi.org/10.1002/apj.85 CrossRefGoogle Scholar
  7. 7.
    Wen, Z.; Yu, X.; Tu, S.-T.; Yan, J.; Dahlquist, E.: Biodiesel production from waste cooking oil catalyzed by TiO2-MgO mixed oxides. Bioresour. Technol. 101, 9570–9576 (2010).  https://doi.org/10.1016/j.biortech.2010.07.066 CrossRefGoogle Scholar
  8. 8.
    Lam, M.K.; Lee, K.T.; Mohamed, A.R.: Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol. Adv. 28, 500–518 (2010).  https://doi.org/10.1016/j.biotechadv.2010.03.002 CrossRefGoogle Scholar
  9. 9.
    Rahmanlar, I.; Yücel, S.; Özçimen, D.: The Production of methyl esters from waste frying oil by microwave method. Asia Pac. J. Chem. Eng. 7, 698–704 (2012)CrossRefGoogle Scholar
  10. 10.
    Sharma, Y.C.; Agrawal, S.; Singh, B.; Frómeta, A.E.N.: Synthesis of economically viable biodiesel from waste frying oils (WFO). Can. J. Chem. Eng. 90, 483–488 (2012).  https://doi.org/10.1002/cjce.20666 CrossRefGoogle Scholar
  11. 11.
    Zhang, Y.; Dubé, M.A.; McLean, D.D.; Kates, M.: Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour. Technol. 89, 1–16 (2003).  https://doi.org/10.1016/S0960-8524(03)00040-3 CrossRefGoogle Scholar
  12. 12.
    Farooq, M.; Ramli, A.; Subbarao, D.: Biodiesel production from waste cooking oil using bifunctional heterogeneous solid catalysts. J. Clean. Prod. 59, 131–140 (2013).  https://doi.org/10.1016/j.jclepro.2013.06.015 CrossRefGoogle Scholar
  13. 13.
    Budžaki, S.; Miljić, G.; Sundaram, S.; Tišma, M.; Hessel, V.: Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors. Appl. Energy. 210, 268–278 (2018)CrossRefGoogle Scholar
  14. 14.
    Saleh, J.; Dubé, M.A.; Tremblay, A.Y.: Separation of glycerol from FAME using ceramic membranes. Fuel Process. Technol. 92, 1305–1310 (2011).  https://doi.org/10.1016/j.fuproc.2011.02.005 CrossRefGoogle Scholar
  15. 15.
    Gomes, M.C.S.; Pereira, N.C.; de Barros, S.T.D.: Separation of biodiesel and glycerol using ceramic membranes. J. Membr. Sci. 352, 271–276 (2010).  https://doi.org/10.1016/j.memsci.2010.02.030 CrossRefGoogle Scholar
  16. 16.
    Alves, M.J.; Nascimento, S.M.; Pereira, I.G.; Martins, M.I.; Cardoso, V.L.; Reis, M.: Biodiesel purification using micro and ultrafiltration membranes. Renew. Energy. 58, 15–20 (2013).  https://doi.org/10.1016/j.renene.2013.02.035 CrossRefGoogle Scholar
  17. 17.
    Atadashi, I.M.; Aroua, M.K.; Abdul Aziz, A.R.; Sulaiman, N.M.N.: Membrane biodiesel production and refining technology: A critical review. Renew. Sustain. Energy Rev. 15, 5051–5062 (2011).  https://doi.org/10.1016/j.rser.2011.07.051 CrossRefGoogle Scholar
  18. 18.
    Atadashi, I.M.; Aroua, M.K.; Abdul Aziz, A.R.; Sulaiman, N.M.N.: High quality biodiesel obtained through membrane technology. J. Membr. Sci. 421–422, 154–164 (2012).  https://doi.org/10.1016/j.memsci.2012.07.006 CrossRefGoogle Scholar
  19. 19.
    Cao, P.; Dubé, M.A.; Tremblay, A.Y.: High-purity fatty acid methyl ester production from canola, soybean, palm, and yellow grease lipids by means of a membrane reactor. Biomass Bioenergy 32, 1028–1036 (2008).  https://doi.org/10.1016/j.biombioe.2008.01.020 CrossRefGoogle Scholar
  20. 20.
    Yaakob, Z.; Mohammad, M.; Alherbawi, M.; Alam, Z.; Sopian, K.: Overview of the production of biodiesel from Waste cooking oil. Renew. Sustain. Energy Rev. 18, 184–193 (2013).  https://doi.org/10.1016/j.rser.2012.10.016 CrossRefGoogle Scholar
  21. 21.
    Baroutian, S.; Aroua, M.K.; Raman, A.A.A.; Sulaiman, N.M.N.: A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst. Bioresour. Technol. 102, 1095–1102 (2011).  https://doi.org/10.1016/j.biortech.2010.08.076 CrossRefGoogle Scholar
  22. 22.
    Hasswa, R.; Dubé, M.A.; Tremblay, A.Y.: Distribution of soap in a membrane reactor in the production of fame from waste cooking oil. Can. J. Chem. Eng. 91, 459–465 (2013).  https://doi.org/10.1002/cjce.21686 CrossRefGoogle Scholar
  23. 23.
    Alicieo, T.V.R.; Mendes, E.S.; Pereira, N.C.; Lima, O.C.M.: Membrane ultrafiltration of crude soybean oil. Desalination 148, 99–102 (2002).  https://doi.org/10.1016/S0011-9164(02)00660-4 CrossRefGoogle Scholar
  24. 24.
    Morais, S.; Couto, S.; Martins, A.A.; Mata, T.M.: Designing eco-efficient biodiesel production processes from waste vegetable oils. In: Pierucci, S., Ferraris, G.B. (eds.) Computer Aided Chemical Engineering, pp. 253–258. Elsevier, New York (2010)Google Scholar
  25. 25.
    Kelloway, A.; Marvin, W.A.; Schmidt, L.D.; Daoutidis, P.: Process design and supply chain optimization of supercritical biodiesel synthesis from waste cooking oils. Chem. Eng. Res. Des. 91, 1456–1466 (2013).  https://doi.org/10.1016/j.cherd.2013.02.013 CrossRefGoogle Scholar
  26. 26.
    Lee, S.; Posarac, D.; Ellis, N.: Process simulation and economic analysis of biodiesel production processes using fresh and waste vegetable oil and supercritical methanol. Chem. Eng. Res. Des. 89, 2626–2642 (2011).  https://doi.org/10.1016/j.cherd.2011.05.011 CrossRefGoogle Scholar
  27. 27.
    Canakci, M.; Van Gerpen, J.: Biodiesel production from oils and fats with high free fatty acids. Trans. ASAE 44, 1429–1436 (2001)CrossRefGoogle Scholar
  28. 28.
    Chai, M.; Tu, Q.; Lu, M.; Yang, Y.J.: Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. Fuel Process. Technol. 125, 106–113 (2014).  https://doi.org/10.1016/j.fuproc.2014.03.025 CrossRefGoogle Scholar
  29. 29.
    Gerpen, J.V.: Biodiesel processing and production. Fuel Process. Technol. 86, 1097–1107 (2005).  https://doi.org/10.1016/j.fuproc.2004.11.005 CrossRefGoogle Scholar
  30. 30.
    Abdurakhman, Y.B., Putra, Z.A., Bilad, M.R.: Process simulation and economic analysis of biodiesel production from waste cooking oil with membrane bioreactor. In: Proceeding of the International Conference on Applied Science and Technology 2017., Kedah (2017)Google Scholar
  31. 31.
    Komintarachat, C.; Chuepeng, S.: Solid Acid Catalyst for Biodiesel Production from Waste Used Cooking Oils. Ind. Eng. Chem. Res. 48, 9350–9353 (2009).  https://doi.org/10.1021/ie901175d CrossRefGoogle Scholar
  32. 32.
    Budiman Abdurakhman, Y.; Adi Putra, Z.; Bilad, M.R.; Md Nordin, N.A.H.; Wirzal, M.D.H.: Techno-economic analysis of biodiesel production process from waste cooking oil using catalytic membrane reactor and realistic feed composition. Chem. Eng. Res. Des. 134, 564–574 (2018).  https://doi.org/10.1016/j.cherd.2018.04.044 CrossRefGoogle Scholar
  33. 33.
    Budiman, Y.A.: Techno-economic evaluation of biodiesel production with membrane reactor (Undergraduate thesis), Universiti Teknologi Petronas (2017)Google Scholar
  34. 34.
    Suthar, K., Joshipura, M.: A comparative study on predictions of vapor liquid equilibrium of biodiesel systems. Presented at the Proceedings of the 2nd International Conference on Current Trends in Technology (NUiCONE’11) (2011)Google Scholar
  35. 35.
    Meng, X.; Chen, G.; Wang, Y.: Biodiesel production from waste cooking oil via alkali catalyst and its engine test. Fuel Process. Technol. 89, 851–857 (2008).  https://doi.org/10.1016/j.fuproc.2008.02.006 CrossRefGoogle Scholar
  36. 36.
    Haigh, K.F.; Vladisavljević, G.T.; Reynolds, J.C.; Nagy, Z.; Saha, B.: Kinetics of the pre-treatment of used cooking oil using Novozyme 435 for biodiesel production. Chem. Eng. Res. Des. 92, 713–719 (2014).  https://doi.org/10.1016/j.cherd.2014.01.006 CrossRefGoogle Scholar
  37. 37.
    Abdurakhman, Y.B.; Putra, Z.A.; Bilad, M.R.: Aspen HYSYS Simulation for Biodiesel Production from Waste Cooking Oil using Membrane Reactor. In: Annual Applied Science and Engineering Conference. UPI Publication Center, Bandung (2016)Google Scholar
  38. 38.
    Aspen HYSYS v8. Aspentech (2015)Google Scholar
  39. 39.
    Javidialesaadi, A.; Raeissi, S.: Biodiesel Production from High Free Fatty Acid-Content Oils: Experimental Investigation of the Pretreatment Step. APCBEE Procedia. 5, 474–478 (2013).  https://doi.org/10.1016/j.apcbee.2013.05.080 CrossRefGoogle Scholar
  40. 40.
    The PubChem Project, https://pubchem.ncbi.nlm.nih.gov/
  41. 41.
    ChemicalBook—Chemical Search Engine, http://www.chemicalbook.com/

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Chemical Engineering DepartmentUniversitiTeknologi PETRONASBandar Seri IskandarMalaysia
  2. 2.Department of Chemical EngineeringKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations