Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1305–1320 | Cite as

Elastohydrodynamic Behavior Analysis of Journal Bearing Using Fluid–Structure Interaction Considering Cavitation

  • Yu Chen
  • Yu Sun
  • Qiang HeEmail author
  • Jun Feng
Research Article - Mechanical Engineering


This paper presents the lubrication performance analyses of journal bearing using the fluid–structure coupling method, whereas realistic features of cavitation and deformation are accounted for. The multiphase flow model of journal bearing is established with a mixture model considering both cavitation and thermal effects. Moreover, the hydrodynamic characteristics of journal bearing with cavitation are analyzed with the proposed multiphase flow model and the maximum difference is less than 6% between the simulation results and experimental data, which is then verified through a demonstrative application example. Furthermore, the effects of eccentricity ratio, rotational speed and oil-film thickness on the elastohydrodynamic characteristics of journal bearing with different groove shapes are numerically investigated. The numerical results suggest that groove shapes and operating conditions play the crucial roles in changing the elastohydrodynamic characteristics of journal bearing. The change of groove shapes can improve the load-carrying capacity of journal bearing and decrease the average temperature of oil film.


Journal bearing Fluid–structure interaction Groove shape Lubrication performance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the “National Natural Science Foundation of China (No. 51705215),” “Natural Science Foundation of Jiangsu Province (No. BK20170824)” and the “Fundamental Research Funds for the Central Universities” (No. 30917011343).


  1. 1.
    Deligant, M.; Podevin, P.; Descombes, G.: CFD model for turbochanger journal bearing performances. Appl. Therm. Eng. 31, 811–819 (2011)CrossRefGoogle Scholar
  2. 2.
    Shimpi, M.E.; Deheri, G.M.: Ferrofluid lubrication of rotating curved rough porous circular plates and effect of bearing’s deformation. Arab. J. Sci. Eng. 38, 2865–2874 (2013)CrossRefGoogle Scholar
  3. 3.
    Wang, Y.Q.; Shi, X.J.; Zhang, L.J.: Experimental and numerical study on water-lubricated rubber bearings. Ind. Lubr. Tribol. 66, 282–288 (2014)CrossRefGoogle Scholar
  4. 4.
    Feng, H.; Jiang, S.: Dynamic analysis of water-lubricated motorized spindle considering tilting effect of thrust bearing. Proc. Inst. Mech. Eng. (2016)Google Scholar
  5. 5.
    Zhang, M.; Yang, J.; Xu, W.: Leakage and rotordynamic performance of a mixed labyrinth seal compared with that of a staggered labyrinth seal. J. Mech. Sci. Technol. 31(5), 2261–2277 (2017)CrossRefGoogle Scholar
  6. 6.
    Yang, J.; Guo, R.; Tian, Y.: Hybrid radial basis function/finite element modeling of journal bearing. Tribol. Int. 41(12), 1169–1175 (2008)CrossRefGoogle Scholar
  7. 7.
    Scaraggi, M.; Comingio, D.; Lorenzis, L.D.: The influence of geometrical and rheological non-linearity on the calculation of rubber friction. Tribol. Int. 101, 402–413 (2016)CrossRefGoogle Scholar
  8. 8.
    Feng, H.; Jiang, S.: Dynamics of a motorized spindle supported on water-lubricated bearings. Proc. Inst. Mech. Eng. Part C 231(3), 459–472 (2017)CrossRefGoogle Scholar
  9. 9.
    Knight, J.D.; Ghadimi, P.: Analysis and observation of cavities in a journal bearing considering flow continuity. Tribol. Trans. 44, 88–96 (2001)CrossRefGoogle Scholar
  10. 10.
    Pierre, I.; Bouyer, J.; Fillon, M.: Thermohydrodynamic behavior of misaligned plain journal bearings: theoretical and experimental approaches. Tribol. Trans. 47, 594–604 (2004)CrossRefGoogle Scholar
  11. 11.
    Singh, U.; Roy, L.; Sahu, M.: Steady-state thermo-hydrodynamic analysis of cylindrical fluid film journal bearing with an axial groove. Tribol. Int. 41, 1135–1144 (2008)CrossRefGoogle Scholar
  12. 12.
    Roy, L.; Laha, S.K.: Steady state and dynamic characteristics of axial grooved journal bearings. Tribol. Int. 42, 754–761 (2009)CrossRefGoogle Scholar
  13. 13.
    Durany, J.; Pereira, J.; Varas, F.: Dynamical stability of journal-bearing devices through numerical simulation of thermohydrodynamic models. Tribol. Int. 43, 1703–1718 (2010)CrossRefGoogle Scholar
  14. 14.
    Boubendir, S.; Larbi, S.; Bennacer, R.: Numerical study of the thermo-hydrodynamic lubrication phenomena in porous journal bearings. Tribol. Int. 44, 1–8 (2011)CrossRefGoogle Scholar
  15. 15.
    Brito, F.P.; Miranda, A.S.; Claro, J.C.P.; Fillon, M.: Experimental comparison of the performance of a journal bearing with a single and a twin axial groove configuration. Tribol. Int. 54, 1–8 (2012)CrossRefGoogle Scholar
  16. 16.
    Hu, J.; Wu, W.; Wu, M.; Yuan, S.: Numerical investigation of the air–oil two-phase flow inside an oil-jet lubricated ball bearing. Int. J. Heat Mass Transf. 68, 85–93 (2014)CrossRefGoogle Scholar
  17. 17.
    Gao, S.; Cheng, K.; Chen, S.: CFD based investigation on influence of orifice chamber shapes for the design of aerostatic thrust bearings at ultra-high speed spindles. Tribol. Int. 92, 211–221 (2015)CrossRefGoogle Scholar
  18. 18.
    Nair, K.P.; Nair, V.P.S.; Jayadas, N.H.: Static and dynamic analysis of elastohydrodynamic elliptical journal bearing with micropolar lubricant. Tribol. Int. 40, 297–305 (2007)CrossRefGoogle Scholar
  19. 19.
    Jiang, S.; Yang, S.; Yin, Z.: Static and dynamic characteristics of externally pressurized annular porous gas thrust bearings. Proc. Inst. Mech. Eng. Part J 230(10), 1221–1230 (2016)CrossRefGoogle Scholar
  20. 20.
    Nair, V.P.S.; Nair, K.P.: Finite element analysis of elastohydrodynamic circular journal bearing with micropolar lubricants. Finite Elem. Anal. Des. 41, 75–89 (2004)CrossRefGoogle Scholar
  21. 21.
    Suy, F.C.; Lagemann, V.; Fusser, H.J.: The transient elastohydrodynamic friction analysis of main bearings. Life Cycle Tribol. 48, 617–626 (2005)CrossRefGoogle Scholar
  22. 22.
    Liu, H.; Xu, H.; Ellison, P.J.; Jin, Z.: Application of computational fluid dynamics and fluid–structure interaction method to the lubrication study of a rotor-bearing system. Tribol. Lett. 38, 325–336 (2010)CrossRefGoogle Scholar
  23. 23.
    Lin, Q.; Wei, Z.; Wang, N.; Chen, W.: Analysis on the lubrication performances of journal bearing system using computational fluid dynamics and fluid–structure considering thermal influence and cavitation. Tribol. Int. 64, 8–15 (2013)CrossRefGoogle Scholar
  24. 24.
    Meng, F.M.; Zhang, L.; Liu, Y.; Li, T.T.: Effect of compound dimple on tribological performances of journal bearing. Tribol. Int. 91, 99–110 (2015)CrossRefGoogle Scholar
  25. 25.
    Dhande, D.Y.; Pande, D.W.: Multiphase flow analysis of hydrodynamic journal bearing using CFD coupled fluid structure interaction considering cavitation. J. King Saud Univ. Eng. Sci. (2016)Google Scholar
  26. 26.
    Costa, L.; Fillon, M.: An experimental investigation of the effect of groove location and supply pressure on THD performance of a steadily loaded journal bearing. J. Tribol. 122, 227–232 (2000)CrossRefGoogle Scholar
  27. 27.
    Kasolang, S.; Ahmad, M.A.: Preliminary study of pressure profile in hydrodynamic lubrication journal bearing. Procedia Eng. 41, 1743–1749 (2012)CrossRefGoogle Scholar
  28. 28.
    Shyu, S.H.; Jeng, Y.R.; Li, F.L.: A legendre collocation method for thermohydrodynamic journal-bearing problems with Elrod’s cavitation algorithm. Tribol. Int. 41, 493–501 (2008)CrossRefGoogle Scholar
  29. 29.
    Kuznetsov, E.; Glavatskih, S.: Dynamic characteristics of compliant journal bearings considering thermal effects. Tribol. Int. 94, 288–305 (2016)CrossRefGoogle Scholar
  30. 30.
    Nada, G.S.; Osman, T.A.: Static performance of finite hydrodynamic journal bearings lubricated by magnetic fluids with couple stresses. Tribol. Lett. 27, 261–268 (2007)CrossRefGoogle Scholar
  31. 31.
    Gertzos, K.P.; Nikolapoulos, P.G.; Papadopoulos, C.A.: CFD analysis of journal bearing hydrodynamic lubrication by Bingham lubricant. Tribol. Int. 41, 1190–1204 (2008)CrossRefGoogle Scholar
  32. 32.
    Xu, W.; Yang, J.: An approximate solution of muijderman’s model for performance calculation of spiral grooved gas seal. J. Tribol. 139, 051706-1-051706-6 (2017)Google Scholar
  33. 33.
    Chauhan, A.; Sehgal, R.; Sharma, R.K.: Thermohydrodynamic analysis of elliptical journal bearing with different grade oils. Tribol. Int. 43, 1970–1977 (2010)CrossRefGoogle Scholar
  34. 34.
    Zhang, Z.S.; Yang, Y.M.; Dai, X.D.; Xie, Y.B.: Effects of thermal boundary conditions on plain journal bearing thermohydrodynamic lubrication. Tribol. Trans. 56, 759–770 (2013)CrossRefGoogle Scholar
  35. 35.
    Sander, D.E.; Allmaier, H.; Priebsch, H.H.: Impact of high pressure and shear thinning on journal bearing friction. Tribol. Int. 81, 29–37 (2015)CrossRefGoogle Scholar
  36. 36.
    Wu, W.; Xiong, Z.; Hu, J.; Yuan, S.: Application of CFD to model oil-air flow in a grooved two-disc system. Int. J. Heat Mass Transf. 91, 293–301 (2015)CrossRefGoogle Scholar
  37. 37.
    Zhang, L.; Qian, Z.; Deng, J.; Yin, Y.: Fluid–structure interaction numerical simulation of thermal performance and mechanical property on plate-fins heat exchanger. Heat Mass Transf. 51, 1337–1353 (2015)CrossRefGoogle Scholar
  38. 38.
    Zou, D.; Zhang, J.; Ta, N.; Rao, Z.: The hydroelastic analysis of marine propellers with consideration of the effect of the shaft. Ocean Eng. 131, 95–106 (2017)CrossRefGoogle Scholar
  39. 39.
    Thomsen, K.; Klit, P.: A study on compliant layers and its influence on dynamic response of a hydrodynamic journal bearing. Tribol. Int. 44, 1872–1877 (2011)CrossRefGoogle Scholar
  40. 40.
    Li, Q.; Liu, S.; Pan, X.; Zheng, S.: A new method for studying the 3D transient flow of misaligned journal bearings in flexible rotor-bearing systems. J. Zhejiang Univ. Sci. A 13(4), 293–310 (2013)CrossRefGoogle Scholar
  41. 41.
    Xu, W.; Yang, J.: Spiral-grooved gas face seal for steam turbine shroud tip leakage reduction: performance and feasibility analysis. Tribol. Int. 98, 242–252 (2016)CrossRefGoogle Scholar
  42. 42.
    Gao, G.; Yin, Z.; Jiang, D.; Zhang, X.: Numerical analysis of plain journal bearing under hydrodynamic lubrication by water. Tribol. Int. 75, 31–38 (2014)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringJiangsu University of TechnologyChangzhouChina
  2. 2.School of Mechanical EngineeringNanjing University of Science and TechnologyNanjingChina
  3. 3.School of Mechanical EngineeringJiangsu University of Science and TechnologyZhenjiangChina
  4. 4.National Key Laboratory of Transient PhysicsNanjing University of Science and TechnologyNanjingChina

Personalised recommendations