Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 2763–2773 | Cite as

Development of a Magnetorheological Damper of the Micro-vibration Using Fuzzy PID Algorithm

  • Lei Zhang
  • Wendong WangEmail author
  • Yikai Shi
Research Article - Systems Engineering
  • 25 Downloads

Abstract

Control moment gyroscope (CMG) is an ideal device for satellite attitude transformation, which inevitably has micro-vibration in that process, and it will seriously affect the high precision imaging of the satellite. To restrain the interference with micro-vibration caused by CMG, a magnetorheological (MR) damper and its control method are designed in this study. Besides, the structure, the dynamic model, and the fuzzy PID algorithm of the MR damper are proposed. The magnetic circuit structure is designed according to the requirements of MR dampers for magnetic field, the finite element analysis of magnetic force line and magnetic induction intensity is completed in Maxwell, and the simulation shows that the designed magnetic circuit meets the requirements. The simulation test is carried out by Simulink under the stimulation of vibration source. The vibration suppression effect of the MR damper is tested on the vibration test platform, from which we know the designed MR damper can effectively control the micro-vibration suppression.

Keywords

CMG Micro-vibration MR damper Fuzzy PID 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dyke, S.J.; Spencer, B.F.; Sain, M.K.; Carlson, J.D.: An experimental study of MR dampers for seismic protection. Smart Mater. Struct. 7(5), 693–703 (1998).  https://doi.org/10.1088/0964-1726/7/5/012 CrossRefGoogle Scholar
  2. 2.
    Changrong, L.: Study on the magnetic circuit design method of the magnetorheological fluid damper. J. Funct. Mater. Devices 18(02), 159–164 (2012)Google Scholar
  3. 3.
    Zhongxian, L.: Optimization design of magnetorheological damper and structure seismic damage control. Eng. Mech. 29(08), 94–100 (2012)Google Scholar
  4. 4.
    Stabile, A.; Aglietti, G.S.; Richardson, G.; Smet, G.: Design and verification of a negative resistance electromagnetic shunt damper for spacecraft micro-vibration. J. Sound Vib. 386, 38–49 (2017).  https://doi.org/10.1016/j.jsv.2016.09.024 CrossRefGoogle Scholar
  5. 5.
    Ahamed, R.; Rashid, M.M.; Ferdaus, M.M.; Yusuf, H.B.: Modelling and performance evaluation of energy harvesting linear magnetorheological (MR) damper. J. Low Freq. Noise Vib. Act. Control 36(2), 177–192 (2017).  https://doi.org/10.1177/0263092317711993 CrossRefGoogle Scholar
  6. 6.
    Kazakov, Y.B.; Morozov, N.A.; Nesterov, S.A.: Development of models of the magnetorheological fluid damper. J. Magn. Magn. Mater. 431, 269–272 (2017).  https://doi.org/10.1016/j.jmmm.2016.10.006 CrossRefGoogle Scholar
  7. 7.
    Liu, C.; Jing, X.; Daley, S.; Li, F.: Recent advances in micro-vibration isolation. Mech. Syst. Signal Process. 56–57, 55–80 (2015).  https://doi.org/10.1016/j.ymssp.2014.10.007 CrossRefGoogle Scholar
  8. 8.
    Zhang, X.; Zhang, X.; Zhao, Y.; Zhao, JXuZ: Experimental and numerical studies on a composite MR damper considering magnetic saturation effect. Eng. Struct. 132, 576–585 (2017).  https://doi.org/10.1016/j.engstruct.2016.11.055 CrossRefGoogle Scholar
  9. 9.
    York, D.; Wang, X.; Gordaninejad, F.: A new MR fluid-elastomer vibration isolator. J. Intell. Mater. Syst. Struct. 18(12), 1221–1225 (2007).  https://doi.org/10.1177/1045389X07083622 CrossRefGoogle Scholar
  10. 10.
    York, D.; Wang, X.; Gordaninejad, F.: A new magnetorheological fluid-elastomer vibration isolator. Act. Passiv. Smart Struct. Integr. Syst. 2008, 9281 (2008).  https://doi.org/10.1117/12.776004 Google Scholar
  11. 11.
    Wang, X.; Gordaninejad, F.: A new magnetorheological fluid-elastomer mount: phenomenological modeling and experimental study. Smart Mater. Struct. (2009).  https://doi.org/10.1088/0964-1726/18/9/095045 Google Scholar
  12. 12.
    Bae, J.; Hwang, J.; Roh, J.; Yi, M.: Development of an electromagnetic shock absorber. Int. J. Appl. Electromagn. 49(1), 157–167 (2015).  https://doi.org/10.3233/JAE-150033 CrossRefGoogle Scholar
  13. 13.
    Ebrahimi, B.; Khamesee, M.B.; Golnaraghi, F.: Permanent magnet configuration in design of an eddy current damper. Microsyst. Technol. 16(1–2SI), 19–24 (2010).  https://doi.org/10.1007/s00542-008-0731-z CrossRefGoogle Scholar
  14. 14.
    Aly, A.M.; Christenson, R.E.: Fast hybrid testing of controlled smart dampers for nonlinear structures under earthquakes. Arab. J. Sci. Eng. 39(3), 1573–1579 (2014).  https://doi.org/10.1007/s13369-013-0749-0 CrossRefGoogle Scholar
  15. 15.
    Ying, Z.G.; Ni, Y.Q.; Ye, S.Q.: Stochastic micro-vibration suppression of a sandwich plate using a magneto-rheological visco-elastomer core. Smart Mater. Struct. (2014).  https://doi.org/10.1088/0964-1726/23/2/025019 Google Scholar
  16. 16.
    Huang, W.; Xu, J.; Zhu, D.; Wu, Y.; Lu, JLuK: Semi-active vibration control using a magneto rheological (MR) damper with particle swarm optimization. Arab. J. Sci. Eng. 40(3), 747–762 (2015).  https://doi.org/10.1007/s13369-015-1574-4 CrossRefGoogle Scholar
  17. 17.
    Shahgoli, G.; Fielke, J.; Saunders, C.; Desbiolles, J.: Simulation of the dynamic behaviour of a tractor-oscillating subsoiler system. Biosyst. Eng. 106(2), 147–155 (2010).  https://doi.org/10.1016/j.biosystemseng.2010.03.002 CrossRefGoogle Scholar
  18. 18.
    Sharipov, G.M.; Paraforos, D.S.; Griepentrog, H.W.: Modelling and simulation of the dynamic performance of a no-till seeding assembly with a semi-active damper. Comput. Electron. Agric. 139, 187–197 (2017).  https://doi.org/10.1016/j.compag.2017.05.010 CrossRefGoogle Scholar
  19. 19.
    Yan, B.; Zhang, X.; Luo, Y.; Zhang, Z.; Xie, S.; Zhang, Y.: Negative impedance shunted electromagnetic absorber for broadband absorbing: experimental investigation. Smart Mater. Struct. 23(12), 12504412 (2014).  https://doi.org/10.1088/0964-1726/23/12/125044 CrossRefGoogle Scholar
  20. 20.
    Ok, S.; Kim, D.; Park, K.; Koh, H.: Semi-active fuzzy control of cable-stayed bridges using magneto-rheological dampers. Eng. Struct. 29(5), 776–788 (2007).  https://doi.org/10.1016/j.engstruct.2006.06.020 CrossRefGoogle Scholar
  21. 21.
    Nie, S.; Zhuang, Y.; Liu, W.; Chen, F.: A semi-active suspension control algorithm for vehicle comprehensive vertical dynamics performance. Veh. Syst. Dyn. 55(8), 1099–1122 (2017).  https://doi.org/10.1080/00423114.2017.1299871 CrossRefGoogle Scholar
  22. 22.
    Singru, P.; Raizada, A.; Krishnakumar, V.; Garg, A.; Tai, K.; Raj, V.: Modeling of a magneto-rheological (MR) damper using genetic programming. J. VibroEng. 19(5), 3169–3177 (2017).  https://doi.org/10.21595/jve.2017.17828 CrossRefGoogle Scholar
  23. 23.
    Ni, Y.Q.; Ying, Z.G.; Chen, Z.H.: Micro-vibration suppression of equipment supported on a floor incorporating magneto-rheological elastomer core. J. Sound Vib. 330(18–19), 4369–4383 (2011).  https://doi.org/10.1016/j.jsv.2011.04.020 CrossRefGoogle Scholar
  24. 24.
    Fu, J.; Li, P.; Wang, Y.; Liao, G.; Yu, M.: Model-free fuzzy control of a magnetorheological elastomer vibration isolation system: analysis and experimental evaluation. Smart Mater. Struct. (2016).  https://doi.org/10.1088/0964-1726/25/3/035030 Google Scholar
  25. 25.
    Zhang, N.; Zhao, Q.: Fuzzy sliding mode controller design for semi-active seat suspension with neuro-inverse dynamics approximation for MR damper. J. VibroEng. 19(5), 3488–3511 (2017).  https://doi.org/10.21595/jve.2017.17654 CrossRefGoogle Scholar
  26. 26.
    Muthalif, A.G.A.; Kasemi, H.B.; Nordin, N.H.D.; Rashid, M.M.; Razali, M.K.M.: Semi-active vibration control using experimental model of magnetorheological damper with adaptive F-PID controller. Smart Struct. Syst. 20(1), 85–97 (2017).  https://doi.org/10.12989/sss.2017.20.1.085 Google Scholar
  27. 27.
    Ying, Z.G.; Ni, Y.Q.: Micro-vibration response of a stochastically excited sandwich beam with a magnetorheological elastomer core and mass. Smart Mater. Struct. (2009).  https://doi.org/10.1088/0964-1726/18/9/095005 Google Scholar
  28. 28.
    Mei, D.; Yao, Z.; Kong, T.; Chen, Z.: Parameter optimization of time-varying stiffness method for chatter suppression based on magnetorheological fluid-controlled boring bar. Int. J. Adv. Manuf. Technol. 46(9–12), 1071–1083 (2010).  https://doi.org/10.1007/s00170-009-2166-9 CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.School of Mechanical and Electrical EngineeringNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations