Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 2717–2728 | Cite as

Synchronization Among Different Switches of Four Non-identical Chaotic Systems via Adaptive Control

  • Ayub Khan
  • Mridula Budhraja
  • Aysha IbraheemEmail author
Research Article - Systems Engineering
  • 24 Downloads

Abstract

This manuscript deals with a new insight into multi-switching combination–combination synchronization among different chaotic systems for fully unknown parameters. The suitable controllers and parameter update laws are designed by employing adaptive control and Lyapunov stability approach, to achieve asymptotically stable synchronization states for two drive and two response systems. In order to demonstrate the proposed methodology, an example of Lorenz system, Lu system, Chen–Lee system and Wang system is considered where Lorenz system and Lu system are taken as drive systems and Chen–Lee system and Wang system are taken as response systems. Numerical results are performed to justify the theoretical approach. Computational and theoretical results are in excellent agreement.

Keywords

Multi-switching synchronization Combination–combination synchronization Adaptive control Theory of Lyapunov stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pecora, L.M.; Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Garfinkel, A.; Spano, M.L.; Ditto, W.L.; Weiss, J.N.: Controlling cardiac chaos. Science 257, 1230–1235 (1992)CrossRefGoogle Scholar
  3. 3.
    Blasius, B.; Huppert, A.; Stone, L.: Complex dynamics and phase synchronization in spatially extended ecological system. Nature 399, 354–359 (1999)CrossRefGoogle Scholar
  4. 4.
    Feki, M.: An adaptive chaos synchronization scheme applied to secure communication. Chaos Solitons Fractals 18(1), 141–148 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Tirandaz, H.; Aminabadi, S.S.; Tavakoli, H.: Chaos synchronization and parameter identification of a finance chaotic system with unknown parameters, a linear feedback controller. Alex. Eng. J. (2017).  https://doi.org/10.1016/j.aej.2017.03.041 Google Scholar
  6. 6.
    Al-sawalha, M.M.; Noorani, M.S.M.: Adaptive reduced order anti-synchronization of chaotic systems with fully unknown parameters. Commun. Nonlinear Sci. Numer. Simul. 15(10), 3022–3034 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Senouci, A.; Boukabou, A.: Predictive control and synchronization of chaotic and hyperchaotic systems based on a T–S fuzzy model. Math. Comput. Simul. 105, 62–78 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wu, Z.; Fu, X.: Combination synchronization of three different order nonlinear systems using active beckstepping design. Nonlinear Dyn. 73(3), 1863–1872 (2013)CrossRefzbMATHGoogle Scholar
  9. 9.
    Feng, G.; Cao, J.: Master-slave synchronization of chaotic systems with modified impulsive controller. Adv. Differ. Equ. 2013, 24 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Alfi, A.; Kalat, A.A.; Farrokhnejad, F.: Hybrid control strategy applied to chaos synchronization: new control design and stability analysis. Int. J. Dyn. Control (2017).  https://doi.org/10.1007/s40435-017-0343-5 Google Scholar
  11. 11.
    Alfi, A.: Chaos suppression on a class of uncertain nonlinear chaotic systems using an optimal \(H_{\infty } \) adaptive PID controller. Chaos Solitons Fractals 45(3), 351–357 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mobayen, S.; Baleanu, D.; Tchier, F.: Second-order fast terminal sliding mode control design based on LMI for a class of non-linear uncertain systems and its application to chaotic systems. J. Vib. Control 23(18), 2912–2925 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Yin, C.; Zhong, S.; Chen, W.: Design PD controller for master-slave synchronization of chaotic Lur’e systems with sector and slope restricted nonlinearities. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1632–1639 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Runzi, L.; Yinglan, W.; Shucheng, D.: Combination synchronization of three classic chaotic systems using active beckstepping design. Chaos 21(4), 043114 (2011)CrossRefzbMATHGoogle Scholar
  15. 15.
    Sun, J.; Shen, Y.; Zhang, G.; Xu, C.; Cui, G.: Combination-combination synchronization among four identical or different chaotic systems. Nonlinear Dyn. 73(3), 1211–1222 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Wu, A.; Zhang, J.: Compound synchronization of fourth-order memristor oscillator. Adv. Differ. Equ. 2014, 100 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zhang, B.; Deng, F.: Double-compound synchronization of six memristor-based Lorenz systems. Nonlinear Dyn. 77(4), 1519–1530 (2014)CrossRefGoogle Scholar
  18. 18.
    Sun, J.; Wang, Y.; Wang, Y.; Cui, G.; Shen, Y.: Compound combination synchronization of five chaotic systems via nonlinear control. Optik 127(8), 4136–4143 (2016)CrossRefGoogle Scholar
  19. 19.
    Runzi, L.; Yinglan, W.: Finite-time stochastic combination synchronization of three different chaotic systems and its application in secure communication. Chaos 22(2), 023109 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sun, J.; Shen, Y.; Yin, Q.; Xu, C.: Compound synchronization of four memristor chaotic oscillator systems and secure communication. Chaos 23(1), 013140 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ucar, A.; Lonngren, K.E.; Bai, E.W.: Multi-switching synchronization of chaotic systems with active controllers. Chaos Solitons Fractals 38(1), 254–262 (2008)CrossRefGoogle Scholar
  22. 22.
    Ajayi, A.A.; Ojo, S.K.; Vincent, E.U.; Njah, N.A.: Multi-switching synchronization of a driven hyperchaotic circuit using active backstepping. J. Nonlinear Dyn. 2014, 918586 (2014)Google Scholar
  23. 23.
    Wang, X.Y.; Sun, P.: Multi-switching synchronization of chaotic system with adaptive controllers and unknown parameters. Nonlinear Dyn. 63(4), 599–609 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Vincent, U.E.; Saseyi, A.O.; McClintock, P.V.E.: Multi-switching combination synchronization of chaotic systems. Nonlinear Dyn. 80(1–2), 845–854 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zheng, S.: Multi-switching combination synchronization of three different chaotic systems via nonlinear control. Optik 127(21), 10247–10258 (2016)CrossRefGoogle Scholar
  26. 26.
    Khan, A.; Khattar, D.; Prajapati, N.: Multi-switching combination–combination synchronization of chaotic systems. Pramana 88(3), 47 (2017)CrossRefGoogle Scholar
  27. 27.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lu, J.; Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12(3), 659–661 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Chen, H.K.; Lee, C.I.: Anti-control of chaos in rigid body motion. Chaos Solitons Fractals 21(4), 957–965 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Wang, L.: 3-Scroll and 4-scroll chaotic attractors generated from a new 3-D quadratic autonomous system. Nonlinear Dyn. 56(4), 453–462 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of MathematicsJamia Millia IslamiaDelhiIndia
  2. 2.Department of MathematicsShivaji CollegeDelhiIndia
  3. 3.Department of MathematicsUniversity of DelhiDelhiIndia

Personalised recommendations