Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1233–1242 | Cite as

Effect of Tool Rotational Speed on Friction Stir Welding of ASTM A516-70 Steel Using W–25%Re Alloy Tool

  • Zafar Iqbal
  • Abdelaziz Bazoune
  • Fadi Al-BadourEmail author
  • Abdelrahman Shuaib
  • Neçar Merah
Research Article - Mechanical Engineering


W–25%Re tool was used to friction stir weld ASTM A516-70 steel. This paper presents the results of studying the effects of rotational speed on tool reaction loads, tool wear, weld defects, and weld microstructure. The measured tool axial forces profile were found to be strongly coupled with the weld surface features. At high values of rotational speed, weld microstructure examinations revealed a wide heat-affected zone, coarse grains, and partial dissolving of ferrite and pearlite. These are attributed to the excessive heat generation at high levels of rotational speeds. Stir zone grain refinement occurred at all levels of rotational speeds under investigation, with the finest grains occurring at lower values of the rotational speeds. W–25%Re tool demonstrated excellent wear resistance at low rotational speed. However, at high values of rotational speeds fluctuating loads and high heat input resulted in excessive wear of the tool. Greater amount of wear took place at the tool shoulder, which experienced 50% reduction in the tool shoulder shank. Moreover, elemental diffusion of tungsten occurred into the weld and was found to increase with the increase in tool rotational speed.


Friction stir welding W–Re alloy tools Microstructure analysis Tool reaction loads Tool wear ASTM A516-70 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thomas, W.M.; Nicholas, E.D.; Needhan, J.C.; Murch, M.G.; Temple-Smith, P.; Dawes, C.J.: International patent application PCT/GB92/02203 and GB patent application 9125978.8. UK Patent Office, London, 6 (1991)Google Scholar
  2. 2.
    Prabhu, S.; Shettigar, A.K.; Rao, K.; Rao, S.; Herbert, M.: Influence of welding process parameters on microstructure and mechanical properties of friction stir welded aluminium matrix composite. Mater. Sci. Forum 880, 50–53 (2017)CrossRefGoogle Scholar
  3. 3.
    Mishra, R.S.; De, P.S.; Kumar, N.: Friction Stir Welding and Processing, Science and Engineering. Springer, London (2014)Google Scholar
  4. 4.
    Fènoël, M.A.; Simar, A.: A review about friction stir welding of metal matrix composites. Mater. Charact. 120, 1–17 (2016)CrossRefGoogle Scholar
  5. 5.
    Park, S.H.C.; Sato, Y.S.; Kokawa, H.; Okamoto, K.; Hirano, S.; Inagaki, M.: Boride formation induced by pcBN tool wear in friction-stir-welded stainless steels. Metall. Mater. Trans. A 40(3), 625–636 (2009)CrossRefGoogle Scholar
  6. 6.
    Rai, R.; De, A.; Bhadeshia, H.K.D.H.; DebRoy, T.: Review: friction stir welding tools. Sci. Technol. Weld. Join. 16(4), 325–342 (2011)CrossRefGoogle Scholar
  7. 7.
    Shirazi, H.; Kheirandish, S.; Safarkhanian, M.A.: Effect of process parameters on the macrostructure and defect formation in friction stir lap welding of AA5456 aluminum alloy. Measurement 76, 62–69 (2015)CrossRefGoogle Scholar
  8. 8.
    Thompson, B.: Tungsten-based tool material development for the friction stir welding of hard metals. In: Friction Stir Welding and Processing VI, pp. 105–112Google Scholar
  9. 9.
    Buffa, G.; Fratini, L.; Micari, F.; Settineri, L.: On the choice of tool material in friction stir welding of titanium alloys. In: Transaction of North American Manufacturing Research Conference of SME June 4–8, 2012 Notre Dame, pp. 785–794. Indiana, USA (2012)Google Scholar
  10. 10.
    Iqbal, Z.; Saheb, N.; Shuaib, A.R.: W–25%Re–HfC composite materials for pin tool material applications: synthesis and consolidation. J. Alloys Compd. 674, 189–199 (2016)CrossRefGoogle Scholar
  11. 11.
    Iqbal, Z.; Merah, N.; Saheb, N.; Shuaib, A.R.; Aqeeli, A.N.: Investigation of wear characteristics of spark plasma sintered W–25wt%Re alloy and W–25wt%Re–3.2wt%HfC composite. Tribol. Int. 116, 129–137 (2017)CrossRefGoogle Scholar
  12. 12.
    Hsieh, M.J.; Chiou, Y.C.; Lee, R.T.: Friction stir spot welding of low-carbon steel using an assembly-embedded rod tool. J. Mater. Process. Technol. 224, 149–155 (2015)CrossRefGoogle Scholar
  13. 13.
    Lienert, T.J.; Stellwag Jr., W.L.; Grimmett, B.B.; Warke, R.W.: Friction stir welding studies on mild steel. Weld. J. N. Y. 82(1), 1–9 (2003)Google Scholar
  14. 14.
    Bilgin, M.B.; Meran, C.: The effect of tool rotational and traverse speed on friction stir weldability of AISI 430 ferritic stainless steels. Mater. Des. 33, 376–383 (2012)CrossRefGoogle Scholar
  15. 15.
    Barnes, S.J.; Bhatti, A.R.; Steuwer, A.; Johnson, R.; Altenkirch, J.; Withers, P.J.: Friction stir welding in HSLA-65 steel: Part I. Influence of weld speed and tool material on microstructural development. Metall. Mater. Trans. A 43(7), 2342–2355 (2012)CrossRefGoogle Scholar
  16. 16.
    Schmidt, H.; Hattel, J.; Wert, J.: An analytical model for the heat generation in friction stir welding. Modell. Simul. Mater. Sci. Eng. 12(1), 143 (2003)CrossRefGoogle Scholar
  17. 17.
    Al-Badour, F.A.; Merah, N.; Shuaib, A.; Bazoune, A.: Experimental investigation of friction stir seal welding of tube-tubesheet joints. J. Press. Vessel Technol. 137(1), 011402 (2015)CrossRefGoogle Scholar
  18. 18.
    Shuaib, A.R.; Al-Badour, F.; Merah, N.: Friction stir seal welding (FSSW) tube-tubesheet joints made of steel. In: ASME 2015 Pressure Vessels and Piping Conference, pp. V06BT06A005–V06BT06A005. American Society of Mechanical Engineers (2015)Google Scholar
  19. 19.
    European Standard: Friction Stir Welding Aluminium Part 1: Vocabulary (ISO 25239–1:2011). European Committee for Standardization, CEN (2011)Google Scholar
  20. 20.
    Zhang, Z.; Zhang, H.W.: Solid mechanics-based Eulerian model of friction stir welding. Int. J. Adv. Manuf. Technol. 72(9–12), 1647–1653 (2014)CrossRefGoogle Scholar
  21. 21.
    Bastier, A.; Maitournam, M.H.; Van Dang, K.; Roger, F.: Steady state thermomechanical modelling of friction stir welding. Sci. Technol. Weld. Join. 11(3), 278–288 (2006)CrossRefzbMATHGoogle Scholar
  22. 22.
    Jun, C.K.; Hoch, M.: Thermal conductivity of tantalum, tungsten, rhenium, tantalum-10 tungsten, t (111), t (222), tungsten-25 rhenium alloys in the temperature range 1500–2800 k. Cincinnati Univ of Materials Science Program (1966)Google Scholar
  23. 23.
    Wade, M.; Reynolds, A.P.: Friction stir weld nugget temperature asymmetry. Sci. Technol. Weld. Join. 15, 64–39 (2013)CrossRefGoogle Scholar
  24. 24.
    Al-Badour, F.; Merah, N.; Shuaib, A.; Bazoune, A.: Thermo-mechanical finite element model of friction stir welding of dissimilar alloys. Int. J. Adv. Manuf. Technol. 72(5–8), 607–617 (2014)CrossRefGoogle Scholar
  25. 25.
    Linnert, G.E.: Welding Metallurgy, Carbon and Alloy Steels, Vol. 1. Fundamentals. American Welding Society, Welding Metallurgy, Carbon and Alloy Steels, 1, 940 (1994)Google Scholar
  26. 26.
    Hughes, K.E.; Nair, K.D.; Sellars, C.M.: Temperature and flow stress during the hot extrusion of steel. Met. Technol. 1, 161–169 (2013)CrossRefGoogle Scholar
  27. 27.
    ASTM E384-17: Standard Test Method for Microindentation Hardness of Materials. ASTM International, West Conshohocken. (2017)
  28. 28.
    Pradeep, A.; Muthukumaran, S.: Two modes of metal transfer phenomenon in friction stir welding of low alloy steel plates. In: Proceedings of the 1st International Joint Symposium on Joining and Welding: Osaka, Japan, 6–8 Nov 2013, p. 305. Woodhead Publishing (2014)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Zafar Iqbal
    • 1
  • Abdelaziz Bazoune
    • 2
  • Fadi Al-Badour
    • 2
  • Abdelrahman Shuaib
    • 3
  • Neçar Merah
    • 2
  1. 1.Department of Metallurgy and Materials EngineeringPakistan Institute of Engineering and Applied SciencesNilore, IslamabadPakistan
  2. 2.Mechanical Engineering DepartmentKing Fahd University of Petroleum and Minerals (KFUPM)DhahranSaudi Arabia
  3. 3.Mechanical and Aerospace Engineering Department, School for Engineering of Matter, Transport and EnergyArizona State UniversityTempeUSA

Personalised recommendations