Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 2295–2304 | Cite as

Application of Hierarchical Encoding Scheme in Distribution Networks Reconfiguration

  • Juan WenEmail author
  • Yang-hong Tan
  • Lin Jiang
Research Article - Electrical Engineering
  • 26 Downloads

Abstract

As the vital issue to implement the reconfiguration strategies, the encoding scheme uses a series of code strings to represent candidate topologies of a distribution network. The traditional encodings tend to generate many possible solutions with the network scale growing. And the convergence of reconfiguration strategies may be disturbed because of representing many unfeasible solutions. This paper proposes a hierarchical encoding scheme which is used to generate candidate configurations. Its main contribution is capable of obtaining only radial connected solutions without demanding tedious mesh checks. The scheme has been successfully applied to reconfiguration strategy with particle swarm optimization to minimize the solution space size and avoid invalid population particles. Numeric results of implemented representations in tested distribution systems verify the performance of the proposed method.

Keywords

Distribution network Hierarchical encoding scheme Reconfiguration strategy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, C.; Lin, Z.Z.; Wen, F.H.: Two-stage power network reconfiguration strategy considering node importance and restored generation capacity. IET Gener. Transm. Distrib. 8(1), 91–103 (2014)Google Scholar
  2. 2.
    Šošić, D.; Žarković, M.; Dobrić, G.: Fuzzy-based Monte Carlo simulation for harmonic load flow in distribution networks. IET Gener. Transm. Distrib. 9(3), 267–275 (2015)Google Scholar
  3. 3.
    Mazza, A.; Chicco, G.; Russo, A.: Optimal multi-objective distribution system reconfiguration with multi criteria decision making-based solution ranking and enhanced genetic operators. Int. J. Electr. Power Energy Syst. 54(1), 255–267 (2014)Google Scholar
  4. 4.
    Tsai, M.S.; Hsu, F.Y.: Application of grey correlation analysis in evolutionary programming for distribution system feeder reconfiguration. IEEE Trans. Power Syst. 25(2), 1126–1133 (2010)Google Scholar
  5. 5.
    Andervazh, M.; Olamaei, J.; Haghifam, M.: Adaptive multi-objective distribution network reconfiguration using multi-objective discrete particles swarm optimization algorithm and graph theory. IET Gener. Transm. Distrib. 7(4), 1801–1810 (2013)Google Scholar
  6. 6.
    Abdelaziz, A.Y.; Mohammed, F.M.; Mekhamer, S.F.: Distribution systems reconfiguration using a modified particle swarm optimization algorithm. Electr. Power Syst. Res. 79(12), 1521–1530 (2009)Google Scholar
  7. 7.
    Scenna, F.; Anaut, D.; Passoni, L.I.: Reconfiguration of electrical networks by an Ant Colony Optimization algorithm. IEEE Latin Am. Trans. 11(1), 538–544 (2013)Google Scholar
  8. 8.
    Fukuyama, Y.; Chiang, H.D.: A parallel genetic algorithm for service restoration in electric power distribution systems. IEEE International Conference on Fuzzy Systems, pp. 275–282 (1995)Google Scholar
  9. 9.
    Hong, Y.Y.; Ho, S.Y.: Determination of network configuration considering multiobjective in distribution systems using genetic algorithms. IEEE Trans. Power Syst. 20(2), 1062–1069 (2005)Google Scholar
  10. 10.
    Huang, Y.C.: Enhanced genetic algorithm-based fuzzy multi-objective approach to distribution network reconfiguration. IET Gener. Transm. Distrib. 149(5), 615–620 (2002)Google Scholar
  11. 11.
    Napis, N.F.; Sulaima, M.; Abd, K.A.F.: A comprehensive study of improved evolutionary particle swarm optimization (IEPSO) for network reconfiguration with DGs sizing concurrently. Appl. Mech. Mater. 785(5), 19–23 (2015)Google Scholar
  12. 12.
    Ganguly, S.; Sahoo, N.C.; Das, D.: Mono-and multi-objective planning of electrical distribution networks using particle swarm optimization. Appl. Soft Comput. 11(2), 2391–2405 (2011)Google Scholar
  13. 13.
    Guan, W.L.; Tan, Y.H.; Zhang, H.X.: Distribution system feeder reconfiguration considering different model of DG sources. Int. J. Electr. Power Energy Syst. 68(1), 210–211 (2015)Google Scholar
  14. 14.
    Mendoza, J.; López, R.; Morales, D.; López, E.; Dessante, P.; Moraga, R.: Minimal loss reconfiguration using genetic algorithms with restricted population and addressed operators: real application. IEEE Trans. Power Syst. 21(2), 948–954 (2006)Google Scholar
  15. 15.
    De Macedo Braz, H.D.; De Souza, B.A.: Distribution network reconfiguration using genetic algorithm with sequential encoding: subtractive and additive approaches. IEEE Trans. Power Syst. 26(2), 582–593 (2011)Google Scholar
  16. 16.
    Enacheanu, B.; Raison, B.; Caire, R.: Radial network reconfiguration using genetic algorithm based on the matroid theory. IEEE Trans. Power Syst. 23(1), 186–195 (2008)Google Scholar
  17. 17.
    Ramos, E.R.; Expósito, A.G.; Santos, J.R.; Iborra, F.L.: Path-based distribution network modeling: application to reconfiguration for loss reduction. IEEE Trans. Power Syst. 20(2), 556–564 (2005)Google Scholar
  18. 18.
    Nahman, J.; Perić, D.: Path-set based optimal planning of new urban distribution networks. Int. J. Electr. Power Energy Syst. 85(1), 42–49 (2016)Google Scholar
  19. 19.
    Delbem, A.C.B.; Carvalho, A.C.P.L.F.; Bretas, N.G.: Main chain representation for evolutionary algorithms applied to distribution system reconfiguration. IEEE Trans. Power Syst. 20(1), 425–436 (2005)Google Scholar
  20. 20.
    Tomoiagă, B.; Chindriş, M.; Sumper, A.: Distribution system reconfiguration using genetic algorithm based on connected graphs. Electr. Power Syst. Res. 104(1), 216–225 (2013)Google Scholar
  21. 21.
    Huang, Y.C.: Enhanced genetic algorithm-based fuzzy multi-objective approach to distribution network reconfiguration. IEE Gener. Transm. Distrib. 149(5), 615–620 (2002).  https://doi.org/10.1049/ip-gtd:20020512 Google Scholar
  22. 22.
    Zhu, J.Z.: Optimal reconfiguration of distribution network using the refined genetic algorithm. Electr. Power Syst. Res. 62(1), 37–42 (2012)Google Scholar
  23. 23.
    Salman, N.; Mohamed, A.; Shareef, H.: Optimal network reconfiguration for voltage sag mitigation in distribution systems using improved genetic algorithm. Int. Rev. Electr. Eng. 6(3), 1356–1364 (2011)Google Scholar
  24. 24.
    Torres, J.; Guardado, J.L.; Rivas-Dávalos, F.: A genetic algorithm based on the edge window decoder technique to optimize power distribution systems reconfiguration. Int. J. Electr. Power Energy Syst. 45(1), 28–34 (2013)Google Scholar
  25. 25.
    Miranda, V.; Ranito, J.V.; Proença, L.M.: Genetic algorithm in optimal multistage distribution network planning. IEEE Trans. Power Syst. 9(4), 1927–1933 (1994)Google Scholar
  26. 26.
    Wu, W.C.; Tsai, M.S.: Application of enhanced integer coded particle swarm optimization for distribution system feeder reconfiguration. IEEE Trans. Power Syst. 26(3), 1591–1599 (2011)Google Scholar
  27. 27.
    Khan, S.; Yang, S.; Wang, L.: A modified particle swarm optimization algorithm for global optimizations of inverse problems. IEEE Trans. Magn. 6729(12), 1–5 (2015)Google Scholar
  28. 28.
    Jamalipour, M.; Gharib, M.; Sayareh, R.: PWR power distribution flattening using quantum particle swarm intelligence. Ann. Nucl. Energy 56(2), 143–150 (2013)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.College of Electrical and Information EngineeringUniversity of South ChinaHengyangChina
  2. 2.College of Electrical and Information EngineeringHunan UniversityChangshaChina

Personalised recommendations