Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 5, pp 4533–4554 | Cite as

Evaluation of Rotation Capacity of I-shaped Welded Steel Plate Girders

  • Abhay KulkarniEmail author
  • L. M. Gupta
Research Article - Civil Engineering

Abstract

Flexural ductility in steel sections is required to accommodate inelastic force redistribution. It is used to evaluate available inelastic performances of structures. Various factors that influence ductility of the section are compactness, material properties, and lateral support configuration close to plastic hinge region. This paper attempts to evaluate inelastic rotation response of hybrid and homogeneous I-sections considering the influence of above factors. An experimentally verified nonlinear finite element modeling technique is employed to carry out parametric studies to evaluate the extent of influence of the above parameters on rotation response. An attention is given to the interaction between local and lateral buckling and their influence on inelastic rotation for the members subjected to constant moment loading. Regression analysis of the database parametric studies resulted into an equation for evaluation of rotation capacity of I-shaped steel plate girders. The equation is validated by applying it to selected experiments conducted by various researchers. Results of the proposed equation are compared with the rotation capacity prediction equations by others. Statistical analysis of validation study shows that the proposed equation provides refined results as compared to available equations. A flowchart and solved example for the demonstration of the use of proposed equation along with stable length equations are presented.

Keywords

Hybrid section Slenderness Unbraced length Nonlinear analysis Strain hardening Rotation capacity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    EN 1993-1-1: Eurocode 3—Design of steel structures—Part 1–1: general rules and rules for buildingsGoogle Scholar
  2. 2.
    EN 1993-1-5: Eurocode 3—Design of steel structures—Part 1–5: plated structural elements.Google Scholar
  3. 3.
    IS 800: Indian Standard-General Construction in Steel—Code of Practice. 3rd revision, Bureau of Indian Standards, New Delhi (2007)Google Scholar
  4. 4.
    AISC-LFRD: Specifications for structural steel buildings, Chicago. AISC (2010)Google Scholar
  5. 5.
    Chopra, A.K.; Newmark, N.M.: Design of Earthquake Resistance Structures. Wiley, New York (1980)Google Scholar
  6. 6.
    Vayas, I.; Psycharis, I.: Behavior of thin-walled steel elements under monotonic and cyclic loading. In: International Conference in Structural Dynamics, Rotterdam, pp. 579–583 (1990)Google Scholar
  7. 7.
    Yamada, S.; Akiyama, H.: Deteriorating behavior of members in post-buckling range. Structural Stability and Design. In: Proceedings of the International Conference, Sydney, 1, 169–174 (1995)Google Scholar
  8. 8.
    Galambos, T.V.: Summary report on deformation and energy absorption capacity of steel structures in the inelastic range. American Iron and Steel Institute (1967)Google Scholar
  9. 9.
    Mazzolani, F.M., Piluso, V.: Evaluation of the rotation capacity of steel beams and beam-columns. In: Proceedings of 1st State of the Art Workshop COST C1, Strasbourg (1992)Google Scholar
  10. 10.
    Kato, B.: Deformation capacity of H-section members as determined by local buckling. J. Constr. Steel Res. (1989).  https://doi.org/10.1016/0143-974X(89)90008-4 Google Scholar
  11. 11.
    Gioncu, V.; Petcu, D.: Available rotation capacity of wide flange beams and beam-columns. Part 1: theoretical approach. J. Constr. Steel Res. (1997).  https://doi.org/10.1016/S0143-974X(97)00045-X Google Scholar
  12. 12.
    Gioncu, V.; Petcu, D.: Available rotation capacity of wide flange beams and beam-columns. Part 2: experimental and numerical tests. J. Constr. Steel Res. (1997).  https://doi.org/10.1016/S0143-974X(97)00044-8 Google Scholar
  13. 13.
    Gioncu, V.; Mosoarca, M.; Anastasiadis, A.: Prediction of available rotation capacity and ductility of wide flange beams: Part1: DUCTROT-M computer program. J. Constr. Steel Res. (2012a).  https://doi.org/10.1016/jcsr.2011.06.014 Google Scholar
  14. 14.
    Gioncu, V.; Mosoarca, M.; Anastasiadis, A.: Prediction of available rotation capacity and ductility of wide flange beams: Part 2: applications. J. Constr. Steel Res. (2012b).  https://doi.org/10.1016/jcsr.2011.08.007 Google Scholar
  15. 15.
    White, D.W.; Ramirez, J.A.; Barth, K.E.: Moment-rotation relationship for unified auto stress design of continuous-span bridge beams and girders. Report FHWA/IN/JTRP-97/8, US Department of Transportation, Federation Highway Admin, Washington, DC (1997)Google Scholar
  16. 16.
    White, D.W.; Barth, K.E.: Strength and ductility of compact I-girder in negative bending. J. Constr. Steel Res. (1998).  https://doi.org/10.1016/S0143-974X(97)00079-5 Google Scholar
  17. 17.
    Earls, C.J.: Geometric factors influencing structural ductility of compact I-shaped beams. J. Struct. Eng. ASCE (2000a).  https://doi.org/10.1061/(ASCE)0733-9445(2000)126:7(780)
  18. 18.
    Earls, C.J.: Influence of material effect on the structural ductility of compact I-shaped beams. J. Struct. Eng. (2000b).  https://doi.org/10.1061/(ASCE)0733-9445(2000b)126:11(1268)
  19. 19.
    Earls, C.J.: Constant moment behavior of high-performance steel I-shaped beams. J. Constr. Steel Res. (2001).  https://doi.org/10.1016/S0143-974X(01)00012-8 Google Scholar
  20. 20.
    Greco, N.; Earls, C.J.: Structural ductility in hybrid high-performance steel beams. J. Struct. Eng. (2003).  https://doi.org/10.1061/(ASCE)0733-9445(2003)129:12(2003)
  21. 21.
    Shokouhian, M.; Shi, Y.: Investigation of ductility in hybrid and high strength steel beams. Int. J. Steel Struct. (2014a).  https://doi.org/10.1007/s.13296-014-2007-z Google Scholar
  22. 22.
    Shokouhian, M.; Shi, Y.: Classification of I-section flexural members based on member ductility. J. Constr. Steel Res. 95, 198–210 (2014b)CrossRefGoogle Scholar
  23. 23.
    Shokouhian, M.; Shi, Y.: Flexural strength of hybrid I-beams based on slenderness. Eng. Struct. (2015).  https://doi.org/10.1016/j.engstruct.2015.03.029 Google Scholar
  24. 24.
    Castaldo, P.; Nastri, E.; Piluso, V.: Ultimate behavior of RHS temper T6 aluminium alloy beams subjected to non-uniform bending: Parametric analysis. Thin Walled Struct. (2017).  https://doi.org/10.1016/j.tws.2017.02.006 Google Scholar
  25. 25.
    Castaldo, P.; Nastri, E.; Piluso, V.: FEM simulations and rotation capacity evaluation for RHS temper T4 aluminium alloy beams. Compos. B Eng. (2017).  https://doi.org/10.1016/j.compositesb.2016.10.026 Google Scholar
  26. 26.
    Lee, C.H.; Han, K.H.; Uang, C.M.; Kim, D.K.; Park, C.H.; Kim, J.H.: Flexural strength and rotation capacity of I-shaped beams fabricated from 800-Mpa steel. J. Struct. Eng. (2013).  https://doi.org/10.1016/(ASCE)ST.1943-541X.0000727 Google Scholar
  27. 27.
    Wang, C.S.; Lan Duan.; Chen, Y.F.; Wang, S.C.: Flexural behavior and ductility of hybrid high-performance steel I-girders. J. Constr. Steel Res. (2016).  https://doi.org/10.1016/j.jcsr.2016.06.001
  28. 28.
    ANSYS Inc.: Release 12.0/Mechanical user guide, South point, 275, Technology Drive, Canonsburg, PA15317 (2010)Google Scholar
  29. 29.
    Kulkarni, A.S.; Gupta, L.M.: Experimental investigation on flexural response of hybrid steel plate girder. KSCE J. Civ. Eng. 1–17 (2017) (published online)Google Scholar
  30. 30.
    Gioncu, V.; Mazzolani, F.M.: Ductility of Seismic Resistant Steel Structure. SPON Press, London (2002)Google Scholar
  31. 31.
    Nakashima, M.: Variation and prediction of deformation capacity of steel beam-column. In: Proceedings of earthquake engineering, 10th world conference, Balkema, Rotterdam, pp. 4501–4507 (1994)Google Scholar
  32. 32.
    EN1998-1-3: Design provisions for earthquake resistant structures, Part 1-3. Specific rules for various materials and elements.Google Scholar
  33. 33.
    Trahair, N.; Bradford, M.; Nethercot, D.; Gardner, L.: The Behavior and Design of Steel Structures to EN 1993-1-1, 4th edn. Taylor and Francis, London (2007)Google Scholar
  34. 34.
    Montgomery, D.C.; Runger, G.C.: Applied Statistics and Probability for Engineers ISV, 6th edn. Wiley, New Delhi (2014)zbMATHGoogle Scholar
  35. 35.
    Teh, L.H.; Clarke, M.J.: Tracing secondary equilibrium path of elastic framed structures. J. Eng. Mech. (1999).  https://doi.org/10.1061/(ASCE)0733-9399(1999) Google Scholar
  36. 36.
    Memon, B.A.; Xiao-zu, S.U.: Arc-length technique for non-linear finite element analysis. J. Zhejiang Univ. (2004).  https://doi.org/10.1631/jzus.2004.0618 Google Scholar
  37. 37.
    Ramanan, L.: Simulation of non-linear analysis in ANSYS. In: ANSYS India Users Conference (2006).Google Scholar
  38. 38.
    Bayer, A.; Boissonnade, N.; Khelil, A.; Bureau, A.: Influence of assumed geometric and material imperfections on the numerically determined ultimate resistance of hot-rolled U-shaped steel members. J. Constr. Steel Res. (2018).  https://doi.org/10.1061/j.jcsr.2018.03.021 Google Scholar
  39. 39.
    Lay, M.G.; Adams, P.F.; Galambos, T.V.: Experiment on High Strength Steel Members. Bulletin No.110. Welding Research Council (1965)Google Scholar
  40. 40.
    SPSS – Statistical Package for Social Sciences, IBM (2015)Google Scholar
  41. 41.
    Holtz, N.M.; Kulak, G.L.: Web slenderness limit for compact beams. Struct. Eng. Report No.43, Dept. of Civ. Eng, University of Alberta, Edmonton Alta, Canada (1973)Google Scholar
  42. 42.
    Holtz, N.M.; Kulak, G.L.: Web slenderness limit for non-compact beams. Struct. Eng. Report No.51, Dept. of Civ. Eng, University of Alberta, Edmonton Alta, Canada (1975)Google Scholar
  43. 43.
    Green, P.S.; Sause, R.; Ricles, J.M.: Strength and ductility of HPS flexural members. J. Constr. Steel Res. (2002).  https://doi.org/10.1016/S0143-974X(01)00102-X Google Scholar
  44. 44.
    Sadowski, A.J.; Rotter, M.J.; Stafford, P.J.; Reinke, T.; Ummenhofer, T.: On the gradient of the yield plateau in structural carbon steels. J. Constr. Steel Res. (2017).  https://doi.org/10.1016/j.jcsr.2016.11.024 Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Visvesvaraya National Institute of TechnologyNagpurIndia
  2. 2.Department of Applied MechanicsVisvesvaraya National Institute of TechnologyNagpurIndia

Personalised recommendations