Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 2335–2343 | Cite as

Slow Light Propagation in Photonic Crystal-Based Meandering Delay Lines Using the PTS Material

  • Mahdi TaheriEmail author
  • Masoud Omoomi
  • Jalil Mazloum
Research Article - Electrical Engineering


In this paper, rectangular and triangular photonic crystal (PC) delay lines are designed using PTS (p-toluene sulfonate) at 1550 nm. PTS possesses a high nonlinear refractive index; consequently, when it interacts with an incident light, it provides slow light propagation in a PTS-based device due to the Kerr effect. First, a PC waveguide (PCW) is designed by introducing a line defect made of PTS bars. Such a defect, by using PTS, provides two significant advantages; these include slow group velocity and extremely high optical confinement for a propagating wave through the PCW. Then, two similar PCWs are placed next to each other to investigate the crosstalk phenomenon between them. By choosing an appropriate distance between them, the rectangular and triangular PC reflective meandering delay lines are realized. The rectangular lattice PC reflective meandering delay line exhibits lower propagation losses because this lattice shows a higher transmission coefficient at the corners in comparison with the triangular one. On the other hand, the triangular lattice PC reflective meandering delay line provides very low group velocity for a propagating light wave at the wavelength of 1550 nm; as a consequence, a higher slowing factor is achieved for the triangular lattice PC reflective meandering delay line due to the stronger light–PTS interactions. Simulations are performed using LUMERICAL FDTD SOLUTION v8.15.


Slow light Meandering Delay line PTS Nonlinear 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Funding was provided by Isfahan University of Technology.


  1. 1.
    Baba, T.; Adachi, J.; Ishikura, N.; Hamachi, Y.; Sasaki, H.; Kawasaki, T.; Mori, D.: Dispersion controlled slow light in photonic crystal waveguides. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 85, 443–453 (2009)CrossRefGoogle Scholar
  2. 2.
    Povinelli, M.; Johnson, S.; Joannopoulos, J.: Slow light, band-edge waveguides for tunable time delays. Opt. Express 18, 7145–7159 (2005)CrossRefGoogle Scholar
  3. 3.
    Zhao, Y.; Zhao, H.W.; Zhang, X.Y.; Yuan, B.; Zhang, S.: New mechanisms of slow light and their applications. Opt. Laser Technol. 41, 517–525 (2009)CrossRefGoogle Scholar
  4. 4.
    Khurgin, J.B.: Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis. J. Opt. Soc. Am. B 22, 1062 (2005)CrossRefGoogle Scholar
  5. 5.
    Zhuang, L.; Hoekman, M.; Taddei, C.; Leinse, A.; Heideman, R.G.; Hulzinga, A.; Verpoorte, J.; Oldenbeuving, R.M.; Dijk, P.W.L.; Boller, K.J.; Roeloffzen, C.G.H.: On-chip microwave photonic beamformer circuits operating with phase modulation and direct detection. Opt. Express 22, 17079–17091 (2014)CrossRefGoogle Scholar
  6. 6.
    Wei, Z.; Li, X.; Zhong, N.; Tan, X.; Zhang, X.; Liu, H.; Meng, H.; Liang, R.: Analogue electromagnetically induced transparency based on low-loss metamaterial and its application in nanosensor and slow-light device. Plasmonics 12, 641–647 (2017)CrossRefGoogle Scholar
  7. 7.
    Zhu, Z.M.; Dawes, A.M.C.; Gauthier, D.J.; Zhang, L.; Willner, A.E.: Broadband SBS slow light in an optical fiber. J. Lightwave Technol. 25, 201–206 (2007)CrossRefGoogle Scholar
  8. 8.
    Qin, G.S.; Jose, R.; Ohishi, Y.: Stimulated raman scattering in tellurite glasses as a potential system for slow light generation. J. Appl. Phys. 101(093109), 1–5 (2007)Google Scholar
  9. 9.
    Zhao, Y.; Zhao, H.W.; Zhang, X.Y.; Yuan, B.; Zhang, S.: New mechanisms of slow light and their applications. Opt. Laser Technol. 41, 517–525 (2009)CrossRefGoogle Scholar
  10. 10.
    Krauss, T.F.: Why do we need slow light. Nat. Photonics 2, 448–450 (2008)CrossRefGoogle Scholar
  11. 11.
    Totsuka, K.; Tomita, M.: Dynamics of fast and slow pulse propagation through a microsphere optical fiber system. Phys. Rev. E 75(016610), 1–5 (2007)Google Scholar
  12. 12.
    Nair, R.V.; Vijaya, R.: Photonic crystal sensors: an overview. Prog. Quantum Electron. 34, 89–134 (2010)CrossRefGoogle Scholar
  13. 13.
    Taheri, M.; Omoomi, M.: An ultrafast all-optical switch based on a nonlinear photonic crystal waveguide using single crystal \(p\)-toluene sulfonate. Turk. J. Electr. Eng. Comput. Sci. 25, 2207–2218 (2017)CrossRefGoogle Scholar
  14. 14.
    Wan, Y.; Fu, K.; Li, C.H.; Yun, M.J.: Improving slow light efect in photonic crystal line defect waveguide by using eye-shaped scatterers. Opt. Commun. 286(192), 196 (2013)Google Scholar
  15. 15.
    Zhao, Y.; Zhang, Y.N.; Wang, Q.: Optimization of slow light in slotted photonic crystal waveguide with liquid infiltration. J. Lightwave Technol. 31, 2448–2454 (2013)CrossRefGoogle Scholar
  16. 16.
    Canciamilla, A.; Ferrari, C.; Morichetti, F.; Faolain, L.O.; Rue, R.D.L.; Samarelli, A.; Sorel, M.: Tunable delay lines in silicon photonics: coupled resonators and photonic crystals. IEEE. Photonics. J. 2, 181–194 (2010)CrossRefGoogle Scholar
  17. 17.
    Monat, C.; Corcoran, B.; Pudo, D.; Ebnali, H.M.; Grillet, C.; Pelusi, M.D.; Moss, D.J.; Eggleton, B.J.; White, T.P.; Ofaolain, L.: Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010)CrossRefGoogle Scholar
  18. 18.
    Bakhshi, S.; Morawej, F.M.K.; Ebnali, M.: Design of an ultracompact low-power all-optical modulator by means of dispersion engineered slow light regime in a photonic crystal mach-zehnder interferometer. Appl. Opt. 51, 2687–2692 (2012)CrossRefGoogle Scholar
  19. 19.
    Vlasov, Y.A.; Oboyle, M.; Hamann, H.F.; Mcnab, S.J.: Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005)CrossRefGoogle Scholar
  20. 20.
    Engelen, R.J.P.; Sugimoto, Y.; Watanabe, Y.; Korterik, J.P.; Ikeda, N.; Van, H.N.F.; Asakawa, K.; Kuipers, L.: The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides. Opt. Express 14, 1658–1672 (2006)CrossRefGoogle Scholar
  21. 21.
    Kurt, H.; Stin, K.; Ayas, L.: Study of different spectral regions and delay bandwidth relation in slow light photonic crystal waveguides. Opt. Express 18(26965), 26977 (2010)Google Scholar
  22. 22.
    Elshahat, S.; Khan, K.; Yadav, A.; Ouyang, Z.: Slow-light transmission with high group index and large normalized delay bandwidth product through successive defect rods on intrinsic photonic crystal waveguide. Opt. Commun. 418, 73–79 (2018)CrossRefGoogle Scholar
  23. 23.
    Zhao, Y.; Zhang, Y.; Wang, Q.; Hu, H.: Review on the optimization methods of slow light in photonic crystal waveguide. IEEE Trans. Nanotechnol. 14, 407–426 (2015)CrossRefGoogle Scholar
  24. 24.
    Liang, J.; Ren, L.; Yun, M.; Wang, X.: Wideband slow light with ultralow dispersion in a w1 photonic crystal waveguide. Appl. Opt. 50, G98–G103 (2011)CrossRefGoogle Scholar
  25. 25.
    Fakharzadeh, M.; Ramahi, O.M.; Safavi, N.S.; Chaudhuri, S.K.: Design and analysis of ultra-miniaturized meandering photonic crystals delay lines. IEEE Trans. Adv. Packag. 31, 311–319 (2008)CrossRefGoogle Scholar
  26. 26.
    Lehoucq, R.; Maschhoff, K.; Sorensen D.; Yang C.: FDTD Solutions Reference Guide (2013)Google Scholar
  27. 27.
  28. 28.
    Balanis, C.A.: Advanced Engineering Electromagnetics. Wiley, Hoboken (2012)Google Scholar
  29. 29.
    Kim, D.Y.; Lawrence, B.L.; Torruellas, W.E.; Stegeman, G.I.; Baker, G.; Meth, J.: Assessment of single crystal ptoluene sulfonate as an alloptical switching material at 1.3 \(\upmu \)m assessment of single crystal \(p\)-toluene sulfonate as an all-optical switching material at 1.3 \(\upmu \)m. Appl. Phys. Lett. 65, 1742–1744 (1994)CrossRefGoogle Scholar
  30. 30.
    Boyd, R.W.: Nonlinear Optics, 3rd edn. Academic Press, Burlington (2008)Google Scholar
  31. 31.
    Soljacic, M.; Johnson, S.G.; Fan, S.; Ibanescu, M.; Ippen, E.; Joannopoulos, J.D.: Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J. Opt. Soc. Am. B 19, 2052–2059 (2002)CrossRefGoogle Scholar
  32. 32.
    Khurgin, J.B.: Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis. J. Opt. Soc. Am. B 22, 1062–1074 (2005)CrossRefGoogle Scholar
  33. 33.
    Brenger, J.P.: Perfectly matched layer (pml) for computational electromagnetics. Synth. Lect. Comput. Electromagn. 2, 1–117 (2007)CrossRefGoogle Scholar
  34. 34.
    Gedney, S.D.; Zhao, B.: Auxiliary differential equation formulation for the complex-frequency shifted pml. IEEE. Trans. Antennas Propag. 58, 838–847 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Faculty of Electrical and Computer EngineeringShahid Sattari Aeronautical University of Science and TechnologyTehranIran

Personalised recommendations