Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 2305–2320 | Cite as

A Low-Cost Portable Wireless Multi-frequency Electrical Impedance Tomography System

  • Gurmeet singhEmail author
  • Sneh Anand
  • Brejesh Lall
  • Anurag Srivastava
  • Vaneet SinghEmail author
Research Article - Electrical Engineering


Electrical impedance tomography (EIT) is an approach to reconstruct electrical resistivity images of the body noninvasively. Here we present a novel wireless high-speed frequency division multiplexing and flexible switching-based EIT system with increased temporal resolution using raspberry pi. Proposed multi-frequency electrical impedance system has good performance, portable, energy and cost-efficient. Current is injected to all the electrodes simultaneously having different frequencies which increase the speed for capturing the fast change in impedances. Proposed system can reconstruct real-time 2D images for continuously monitoring applications where impedance changes rapidly. It can capture 70 frames/sec, and its power consumption is 10 mW. The system is designed for a bandwidth of 1 kHz–1 MHz, which covers most of the medical impedance investigations. Performance of the system was measured at 25 KHz by calculating parameter of blur radius (PBR) and percentage of position error (PPE). Average PBR and PPE obtained were 0.985 and 7.24%, respectively. SNR, linearity and stability were calculated after proper calibration by applying a small current of \(500\,\upmu \hbox {A}\). SNR of the system is more than 70 dB. Amplitude and phase measurement repeatability were 0.7% and \(1^{\circ }\), respectively. CMRR of both wired and wireless systems were measured to find the effect of noise on the wireless system. Result shows that the proposed WMFEIT system has comparable performance with the reference systems and has good scope to be used for clinical imaging applications.


Wireless Portable Multi-frequency Electrical impedance tomography Reconstruction algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authorswould like to thankCBME(IIT Delhi, India), AIIMS India and NPL India staff for providing the research facilities and their valuable inputs during this research work.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.


  1. 1.
    Cherepenin, V.; Karpov, A.; Korjenevsky, A.; Kornienko, V.; Mazaletskaya, A.; Mazourov, D.; Meister, D.: A 3D electrical impedance tomography (EIT) system for breast cancer detection. Physiol. Meas. 22(1), 9 (2001)CrossRefGoogle Scholar
  2. 2.
    Huang, J.J.; Hung, Y.H.; Wang, J.J.; Lin, B.S.: Design of wearable and wireless electrical impedance tomography system. Measurement 31(78), 9–17 (2016)CrossRefGoogle Scholar
  3. 3.
    Singh, G.; Anand, S.; Lall, B.; Srivastava, A.; Singh, V.; Singh, H.: Practical phantom study of low cost portable EIT based cancer screening device. In: Long Island Systems, Applications and Technology Conference (LISAT), 2016 IEEE, pp. 1–6. IEEEGoogle Scholar
  4. 4.
    Goharian, M.; Soleimani, M.; Jegatheesan, A.; Chin, K.; Moran, G.R.: A DSP based multi-frequency 3D electrical impedance tomography system. Ann. Biomed. Eng. 36(9), 1594–603 (2008)CrossRefGoogle Scholar
  5. 5.
    Bera, T.K.; Nagaraju, J.: A multifrequency electrical impedance tomography (EIT) system for biomedical imaging. In: Signal Processing and Communications (SPCOM), 2012 International Conference on 2012 IEEE, pp. 1–5. IEEEGoogle Scholar
  6. 6.
    Holder, D.S.: Electrical Impedance Tomography: Methods, History and Applications. CRC Press, Boca Raton (2004)CrossRefGoogle Scholar
  7. 7.
    Barber, D.C.; Brown BH.: Recent developments in applied potential tomography-APT. In: Information Processing in Medical Imaging, pp. 106–21. Martinus Nijhoff, Zoetermeer (1986)Google Scholar
  8. 8.
    Bayford, R.H.: Bioimpedance tomography (electrical impedance tomography). Annu. Rev. Biomed. Eng. 15(8), 63–91 (2006)CrossRefGoogle Scholar
  9. 9.
    Jossinet, J.; Marry, E.; Montalibet, A.: Electrical impedance endo-tomography: imaging tissue from inside. IEEE Trans. Med. Imaging 21(6), 560–5 (2002)CrossRefGoogle Scholar
  10. 10.
    Adler, A.; Guardo, R.: Electrical impedance tomography: regularized imaging and contrast detection. IEEE Trans. Med. Imaging 15(2), 170–9 (1996)CrossRefGoogle Scholar
  11. 11.
    Petley, G.W.; Cotton, A.M.; Deakin, C.D.: Hands-on defibrillation: theoretical and practical aspects of patient and rescuer safety. Resuscitation 83(5), 551–6 (2012)CrossRefGoogle Scholar
  12. 12.
    Halter, R.; Hartov, A.; Paulsen, K.D.: Design and implementation of a high frequency electrical impedance tomography system. Physiol. Meas. 25(1), 379 (2004)CrossRefGoogle Scholar
  13. 13.
    Malone, E.; dos Santos, G.S.; Holder, D.; Arridge, S.: Multifrequency electrical impedance tomography using spectral constraints. IEEE Trans. Med. Imaging 33(2), 340–50 (2014)CrossRefGoogle Scholar
  14. 14.
    Holder, D.S.: Electrical impedance tomography (EIT) of brain function. Brain Topogr. 5(2), 87–93 (1992)CrossRefGoogle Scholar
  15. 15.
    Liston, A.D.; Bayford, R.H.; Holder, D.S.: The effect of layers in imaging brain function using electrical impedance tomograghy. Physiol. Meas. 25(1), 143 (2004)CrossRefGoogle Scholar
  16. 16.
    Nebuya, S.; Koike, T.; Imai, H.; Noshiro, M.; Brown, B.H.; Soma, K.: Measurement of lung function using electrical impedance tomography (EIT) during mechanical ventilation. J. Phys. Conf. Ser. 224(1), 012029 (2010)CrossRefGoogle Scholar
  17. 17.
    Zhou, Y.; Li, X.: Multifrequency time difference EIT imaging of cardiac activities. Biomed. Signal Process. Control 30(38), 128–35 (2017)CrossRefGoogle Scholar
  18. 18.
    Cherepenin, V.A.; Karpov, A.Y.; Korjenevsky, A.V.; Kornienko, V.N.; Kultiasov, Y.S.; Ochapkin, M.B.; Trochanova, O.V.; Meister, J.D.: Three-dimensional EIT imaging of breast tissues: system design and clinical testing. IEEE Trans. Med. Imaging 21(6), 662–7 (2002)CrossRefGoogle Scholar
  19. 19.
    Ye, G.; Lim, K.H.; George, R.; Ybarra, G.; Joines, W.T.; Liu, Q.H.: A 3D EIT system for breast cancer imaging. In: Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on 2006 Apr 6, pp. 1092–1095. IEEEGoogle Scholar
  20. 20.
    Saulnier, G.J.; Liu, N.; Tamma, C.; Xia, H.; Kao, T.J.; Newell, J.C., Isaacson, D.: An electrical impedance spectroscopy system for breast cancer detection. In: Engineering in Medicine and Biology Society, EMBS 2007. 29th Annual International Conference of the IEEE 2007 Aug 22, pp. 4154–4157. IEEEGoogle Scholar
  21. 21.
    Kerner, T.E.; Paulsen, K.D.; Hartov, A.; Soho, S.K.; Poplack, S.P.: Electrical impedance spectroscopy of the breast: clinical imaging results in 26 subjects. IEEE Trans. Med. Imaging 21(6), 638–45 (2002)CrossRefGoogle Scholar
  22. 22.
    Pogue, B.W.; Poplack, S.P.; McBride, T.O.; Wells, W.A.; Osterman, K.S.; Osterberg, U.L.; Paulsen, K.D.: Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast. Radiology 218(1), 261–6 (2001)CrossRefGoogle Scholar
  23. 23.
    Halter, R.J.; Zhou, T.; Meaney, P.M.; Hartov, A.; Barth Jr., R.J.; Rosenkranz, K.M.; Wells, W.A.; Kogel, C.A.; Borsic, A.; Rizzo, E.J.; Paulsen, K.D.: The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience. Physiol. Meas. 30(6), S121 (2009)CrossRefGoogle Scholar
  24. 24.
    Lazebnik, M.; Popovic, D.; McCartney, L.; Watkins, C.B.; Lindstrom, M.J.; Harter, J.; Sewall, S.; Ogilvie, T.; Magliocco, A.; Breslin, T.M.; Temple, W.: A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Phys. Med. Biol. 52(20), 6093 (2007)CrossRefGoogle Scholar
  25. 25.
    Wang, K.; Dong, X.; Fu, F.; Liao, Q.; Liu, R.; Ji, Z.; Wang, T.: A primary research of the relationship between breast tissues impedance spectroscopy and electrical impedance scanning. In: Bioinformatics and Biomedical Engineering, ICBBE 2008. The 2nd International Conference on 2008 May 16, pp. 1575–1579. IEEEGoogle Scholar
  26. 26.
    Martellosio, A.; Pasian, M.; Bozzi, M.; Perregrini, L.; Mazzanti, A.; Svelto, F.; Summers, P.E.; Renne, G.; Preda, L.; Bellomi, M.: Dielectric properties characterization from 0.5 to 50 GHz of breast cancer tissues. IEEE Trans. Microw. Theory Tech. 65(3), 998–1011 (2017)CrossRefGoogle Scholar
  27. 27.
    Mishra, V.; Bouayad, H.; Schned, A.; Hartov, A.; Heaney, J.; Halter, R.J.: A real-time electrical impedance sensing biopsy needle. IEEE Trans. Biomed. Eng. 59(12), 3327–36 (2012)CrossRefGoogle Scholar
  28. 28.
    Zhang, X.; Wang, W.; Sze, G.; Barber, D.; Chatwin, C.: An image reconstruction algorithm for 3-D electrical impedance mammography. IEEE Trans. Med. Imaging 33(12), 2223–41 (2014)CrossRefGoogle Scholar
  29. 29.
    Woo, E.J.; Hua, P.; Webster, J.G.; Tompkins, W.J.: A robust image reconstruction algorithm and its parallel implementation in electrical impedance tomography. IEEE Trans. Med. Imaging 12(2), 137–46 (1993)CrossRefGoogle Scholar
  30. 30.
    Bera, T.K.; Nagaraju, J.: Electrical impedance tomography (EIT): a harmless medical imaging modality. Res. Dev. Comput. Vis. Image Process. Methodol. Appl. IGI Glob. 30, 235–73 (2013)Google Scholar
  31. 31.
    Gaggero, P.O.; Adler, A.; Brunner, J.; Seitz, P.: Electrical impedance tomography system based on active electrodes. Physiol. Meas. 33(5), 831 (2012)CrossRefGoogle Scholar
  32. 32.
    Oh, T.I.; Woo, E.J.; Holder, D.: Multi-frequency EIT system with radially symmetric architecture: KHU Mark1. Physiol. Meas. 28(7), S183 (2007)CrossRefGoogle Scholar
  33. 33.
    Wang, M.; Yin, W.; Holliday, N.: A highly adaptive electrical impedance sensing system for flow measurement. Meas. Sci. Technol. 13(12), 1884 (2002)CrossRefGoogle Scholar
  34. 34.
    Yerworth, R.J.; Bayford, R.H.; Brown, B.; Milnes, P.; Conway, M.; Holder, D.S.: Electrical impedance tomography spectroscopy (EITS) for human head imaging. Physiol. Meas. 24(2), 477 (2003)CrossRefGoogle Scholar
  35. 35.
    Fabrizi, L.; McEwan, A.; Oh, T.; Woo, E.J.; Holder, D.S.: A comparison of two EIT systems suitable for imaging impedance changes in epilepsy. Physiol. Meas. 30(6), S103 (2009)CrossRefGoogle Scholar
  36. 36.
    Huang, S.K.; Loh, K.J.: Development of a portable electrical impedance tomography data acquisition system for near-real-time spatial sensing. Proc. SPIE 9435, 94350E-1–94350E-11 (2015)CrossRefGoogle Scholar
  37. 37.
    Hong, S.; Lee, J.; Bae, J.; Yoo, H.J.: A 10.4 mW electrical impedance tomography SoC for portable real-time lung ventilation monitoring system. In: Solid-State Circuits Conference (A-SSCC), 2014 IEEE Asian, pp. 193–196Google Scholar
  38. 38.
    Lee, S.; Polito, S.; Agell, C.; Mitra, S.; Yazicioglu, R.F.; Riistama, J.; Habetha, J.; Penders, J.: A low-power and compact-sized wearable bio-impedance monitor with wireless connectivity. J. Phys. Conf. Ser. 434(1), 012013 (2013)Google Scholar
  39. 39.
    Bera, T.K.; Nagaraju, J.: A chicken tissue phantom for studying an electrical impedance tomography (EIT) system suitable for clinical imaging. Sens. Imaging Int. J. 12(3–4), 95–116 (2011)CrossRefGoogle Scholar
  40. 40.
    Bera, T.K.; Nagaraju, J.: Resistivity imaging of a reconfigurable phantom with circular inhomogeneities in 2D-electrical impedance tomography. Measurement 44(3), 518–26 (2011)CrossRefGoogle Scholar
  41. 41.
    Zhou, M.; Teng, G.; Zhang, W.: Application of IC MAX038 in waveform generator. Mod. Electron. Tech. 16, 055 (2009)Google Scholar
  42. 42.
    Khan, A.A.; Al-Turaigi, M.A.; Ei-Ela, M.A.: An improved current-mode instrumentation amplifier with bandwidth independent of gain. IEEE Trans. Instrum. Meas. 44(4), 887–91 (1995)CrossRefGoogle Scholar
  43. 43.
    Chauveau, N.; Hamzaoui, L.; Rochaix, P.; Rigaud, B.; Voigt, J.J.; Morucci, J.P.: Ex vivo discrimination between normal and pathological tissues in human breast surgical biopsies using bioimpedance spectroscopy. Ann. N. Y. Acad. Sci. 873(1), 42–50 (1999)CrossRefGoogle Scholar
  44. 44.
    Uranga, A.; Sacristan, J.; Oses, T.; Barniol, N.: Electrode-tissue impedance measurement CMOS ASIC for functional electrical stimulation neuroprostheses. IEEE Trans. Instrum. Meas. 56(5), 2043–2050 (2007)CrossRefGoogle Scholar
  45. 45.
    Sheet, D.: CD4067BE IC, Multiplesers CA.: Demultiplexers. Texas Instruments Inc., USA. (2012)Google Scholar
  46. 46.
    Sengupta, S.K.; Farnham, J.M.; Whitten, J.E.: A simple low-cost lock-in amplifier for the laboratory. J. Chem. Educ. 82(9), 1399 (2005)CrossRefGoogle Scholar
  47. 47.
    Coulon, J.P.; Hesse, M.; Platz, P.: Medium distance low jitter fiber-optic transmission of timing signals in nuclear instrumentation. Nucl. Instrum. Methods Phys. Res. Sect. A 274(1–2), 291–6 (1989)CrossRefGoogle Scholar
  48. 48.
    Baths, V.: A portable real time ECG device for arrhythmia detection using raspberry Pi. In: Wireless Mobile Communication and Healthcare: 6th International Conference, MobiHealth 2016, Milan, Italy, November 14–16, 2016, Proceedings 2017 Jun 28, vol. 192, p. 177. Springer.Google Scholar
  49. 49.
    Adler, A.; Lionheart, W.R.: Uses and abuses of EIDORS: an extensible software base for EIT. Physiol. Meas. 27(5), S25 (2006)CrossRefGoogle Scholar
  50. 50.
    Gagnon, H.; Cousineau, M.; Adler, A.; Hartinger, A.E.: A resistive mesh phantom for assessing the performance of EIT systems. IEEE Trans. Biomed. Eng. 57(9), 2257–66 (2010)CrossRefGoogle Scholar
  51. 51.
    Kao, T.J.; Saulnier, G.J.; Isaacson, D.; Szabo, T.L.; Newell, J.C.: A versatile high-permittivity phantom for EIT. IEEE Trans. Biomed. Eng. 55(11), 2601–7 (2008)CrossRefGoogle Scholar
  52. 52.
    Grewal, P.K.; Shokoufi, M.; Liu, J.; Kalpagam, K.; Kohli, K.S.: Electrical characterization of bolus material as phantom for use in electrical impedance and computed tomography fusion imaging. J. Electric. Bioimpedance 5(1), 34–9 (2014)CrossRefGoogle Scholar
  53. 53.
    Singh, G.; Anand, S.; Lall, B.; Srivastava, A.; Singh, V.: Development of a microcontroller based electrical impedance tomography system. In: Systems, Applications and Technology Conference (LISAT), 2015 IEEE Long Island 2015 May 1, pp. 1–4. IEEEGoogle Scholar
  54. 54.
    Singh, H.; Singh, G.; Singh, V.: Smart & assistive electrical impedance tomographic tool for clinical imaging. In: Wireless Networks and Embedded Systems (WECON), 2016 5th International Conference on 2016 Oct 14, pp. 1–5. IEEEGoogle Scholar
  55. 55.
    Bera, T.K.; Nagaraju, J.: Electrical impedance spectroscopic studies on broiler chicken tissue suitable for the development of practical phantoms in multifrequency EIT. J. Electric. Bioimpedance 2(1), 48–63 (2011)Google Scholar
  56. 56.
    Cook, R.D.; Saulnier, G.J.; Gisser, D.G.; Goble, J.C.; Newell, J.C.; Isaacson, D.: ACT3: a high-speed, high-precision electrical impedance tomograph. IEEE Trans. Biomed. Eng. 41(8), 713–722 (1994)CrossRefGoogle Scholar
  57. 57.
    McEwan, A.; Romsauerova, A.; Yerworth, R.; Horesh, L.; Bayford, R.; Holder, D.: Design and calibration of a compact multi-frequency EIT system for acute stroke imaging. Physiol. Meas. 27(5), S199 (2006)CrossRefGoogle Scholar
  58. 58.
    Ross, A.S.; Saulnier, G.J.; Newell, J.C.; Isaacson, D.: Current source design for electrical impedance tomography. Physiol. Meas. 24(2), 509 (2003)CrossRefGoogle Scholar
  59. 59.
    Hahn, G.; Just, A.; Dittmar, J.; Hellige, G.: Systematic errors of EIT systems determined by easily-scalable resistive phantoms. Physiol. Meas. 29(6), S163 (2008)CrossRefGoogle Scholar
  60. 60.
    Oh, T.I.; Lee, K.H.; Kim, S.M.; Koo, H.; Woo, E.J.; Holder, D.: Calibration methods for a multi-channel multi-frequency EIT system. Physiol. Meas. 28(10), 1175 (2007)CrossRefGoogle Scholar
  61. 61.
    McEwan, A.; Holder, D.S.: Battery powered and wireless electrical impedance tomography spectroscopy imaging using Bluetooth. In: 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing 2007, pp. 798–801. Springer, Berlin (2007)Google Scholar
  62. 62.
    Guermandi, M.; Cardu, R.; Scarselli, E.F.; Guerrieri, R.: Active electrode IC for EEG and electrical impedance tomography with continuous monitoring of contact impedance. IEEE Trans. Biomed. Circuits Syst. 9(1), 21–33 (2015)CrossRefGoogle Scholar
  63. 63.
    Ma, Y.; Miao, L.; Qin, H.; Chen, X.; Xiong, X.; Han, T.; Qin, P.; Ji, X.; Cai, P.: A new modular semi-parallel EIT system for medical application. Biomed. Signal Process. Control 1(39), 416–23 (2018)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Indian Institute of TechnologyNew DelhiIndia
  2. 2.All India Institute of Medical SciencesNew DelhiIndia
  3. 3.Guru Tegh Bahadur Institute of TechnologyNew DelhiIndia

Personalised recommendations