Arabian Journal for Science and Engineering

, Volume 44, Issue 4, pp 3101–3116 | Cite as

Design and Optimization of Novel Shaped FinFET

  • Navneet KaurEmail author
  • Munish Rattan
  • Sandeep Singh Gill
Research Article - Computer Engineering and Computer Science


A novel high-performance and miniaturized fin-shaped field effect transistor has been proposed which has been named as rectzoidal (rectz) because of its origin from the existing rectangular (rect) and trapezoidal (trap) structures. The rationale behind proposing this structure is to sustain the integration of millions of transistors on integrated circuits (ICs), further utilizing these scaled transistors in advanced processors of leading semiconductor industries. The work presented here is divided into two phases: first phase presents the proposed transistor design at 20 nm gate length and its comparative simulation analysis with the previous rect and trap transistor structures in terms of short channel effects and other analog and RF parameters like transconductance, output conductance, intrinsic gain, gate capacitance, unity gain frequency etc. using Cogenda three-dimensional Technology Computer-Aided Design (TCAD) tool. In the subsequent phase, i.e., optimization phase, artificial neural network was trained with design parameters of proposed structure and fitness function was formulated using weighted sum approach. Evolutionary and swarm-based optimization algorithms have been applied to obtain optimum design parameters of proposed transistor structure corresponding to minimum fitness function value. Results obtained through these optimizers are in good consistence with TCAD simulation results.


Short channel effects FinFET Optimization Sub-threshold swing Transconductance TCAD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schaller, R.R.: Moore’s law: past, present, and future. IEEE Spectr. 34, 53–59 (1997)CrossRefGoogle Scholar
  2. 2.
    Tsuchiya, T.; Sato, Y.; Tomizawa, M.: Three mechanisms determining short-channel effects in fully-depleted SOI MOSFETs. IEEE Trans. Electron Dev. 45, 1116–1121 (1998)CrossRefGoogle Scholar
  3. 3.
    Pierret, R.F.: Semiconductor Device Fundamentals. Pearson Education, Delhi, India (1996)Google Scholar
  4. 4.
    Chang, L.; Tang, S.; King, T.J.; Bokor, J.; Hu, C.: Gate length scaling and threshold voltage control of double-gate MOSFETs. In: International Electron Devices Meeting, pp. 719–722 (2000)Google Scholar
  5. 5.
    Chang, L.; Choi, Y.K.; Ha, D.; Ranade, P.; Xiong, S.; Bokor, J.; Hu, C.; King, T.J.: Extremely scaled silicon nano-CMOS devices. Proc. IEEE 91, 1860–73 (2003)CrossRefGoogle Scholar
  6. 6.
    Ernst, T.; Cristoloveanu, S.; Ghibaudo, G.; et al.: Ultimately thin double-gate SOI MOSFETs. IEEE Trans. Electron Dev. 50, 830–838 (2003)CrossRefGoogle Scholar
  7. 7.
    Hisamoto, D.; Lee, W.C.; Kedzierski, J.; et al.: FinFET-a self- aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Dev. 47, 2320–25 (2000)CrossRefGoogle Scholar
  8. 8.
    Kawa, J.: The Use of FinFETs in IP Design. Chip Design Magazine: Tools, Technologies and Methodologies (2013)Google Scholar
  9. 9.
    Islam, R.; Baten, M.Z.; Amin, E.M.; Khosru, Q.D.M.: On the distinction between triple gate (TG) and double gate (DG) SOI FinFETs: a proposal of critical top oxide thickness. In: IEEE International Conference on Electrical and Computer Engineering (ICECE), Dhaka, pp. 434–437 (2013)Google Scholar
  10. 10.
    Chandorkar, A.; Mande, S.; Iwai, H.: Estimation of process variation impact on DG-FinFET device performance using Plackett-Burman design of experiment method. In: 9th International Conference on Solid-State and Integrated-Circuit Technology, Beijing, pp. 215–218 (2008)Google Scholar
  11. 11.
    Sivasankaran, K.; Chitroju, T.R.K.; Reddy, K.S.A.; Subrahmanyam, M.S.; Harsha, M.V.S.; Mallik, P.S.: Effect of gate engineering in FinFET for RF applications. In: IEEE International Conference on Advances in Electrical Engineering (ICAEE), Vellore, pp. 1–6 (2014)Google Scholar
  12. 12.
    Clarke, P.: EE Times. Intel’s FinFETs are less fin and more triangle. (2012). Accessed 25 Jan 2015
  13. 13.
    Fasarakis, N.; Karatsori, T.A.; Tsormpatzoglou, A.; et al.: Compact modeling of nanoscale trapezoidal FinFETs. IEEE Trans. Electron Dev. 61, 324–32 (2014)CrossRefGoogle Scholar
  14. 14.
    Gaurav, A.; Gill, S.S.; Kaur, N.: Performance analysis of rectangular and trapezoidal TG bulk FinFETs for 20 nm gate length. In: Annual IEEE India Conference (INDICON), New Delhi, pp 1–5 (2015)Google Scholar
  15. 15.
    Gaynor, B.D.; Hassoun, S.: Fin shape impact on FinFET leakage with application to multithreshold and ultralow-leakage FinFET design. IEEE Trans. Electron Dev. 61, 2738–2744 (2014)CrossRefGoogle Scholar
  16. 16.
    Nam, H.; Shin, C.: Impact of current flow shape in tapered (versus rectangular) FinFET on threshold voltage variation induced by work-function variation. IEEE Trans. Electron Dev. 61, 2007–2011 (2014)CrossRefGoogle Scholar
  17. 17.
    Dubey, S.; Kondekar, P.N.: Fin shape dependent variability for strained SOI FinFETs. Microelectron. Eng. 162, 63–68 (2016)CrossRefGoogle Scholar
  18. 18.
    Kurniawan, E.D.; Yang, H.; Lin, C.-C.; Wu, Y.-C.: Effect of fin shape of tapered FinFETs on the device performance in 5-nm node CMOS technology. Microelectron. Reliab. (2017) (in press) Google Scholar
  19. 19.
    Yu, Z.; Chang, S.; He, J.; Huang, Q.; Yu, Z.; Chang, S.; Wang, H.; Wang, H.; et al.: Effects of fin shape on sub-10 nm FinFETs. J. Comput. Electron. 14, 515–523 (2015)CrossRefGoogle Scholar
  20. 20.
    TSMC. Leading Edge Technology. Accessed 1 Mar 2017
  21. 21.
    Semiconductor Engineering. IBM, Intel and TSMC Roll out FinFETs. Accessed 1 Mar 2017
  22. 22.
    Global Foundries. 7nm FinFET. Accessed 1 Mar 2017
  23. 23.
    Andrade, M.G.C.; de Martino, J.A.; Aoulaiche, M.; Collaert, N.; Simoen, E.; Claeys, C.: Behavior of triple-gate bulk FinFETs with and without DTMOS operation. Solid State Electron. 71, 63–68 (2012)CrossRefGoogle Scholar
  24. 24.
    Mohapatra, S.K.; Pradhan, K.P.; Singh, D.; Sahu, P.K.: The role of geometry parameters and fin aspect ratio of sub-20 nm SOI-FinFET: an analysis towards analog and RF circuit design. IEEE Trans. Nanotechnol. 14, 546–554 (2015)CrossRefGoogle Scholar
  25. 25.
    Pradhan, K.P.; Priyanka,; Sahu, P.K.: Temperature dependency of double material gate oxide (DMGO) symmetric dual-k spacer (SDS) wavy FinFET. Superlattices Microstruct. 89, 355–361 (2016)CrossRefGoogle Scholar
  26. 26.
    Pradhan, K.P.; Priyanka,; Mallikarjunarao,; Sahu, P.K.: Exploration of symmetric high-k spacer (SHS) hybrid FinFET for high performance application. Superlattices Microstruct. 90, 191–197 (2016)CrossRefGoogle Scholar
  27. 27.
    Pradhan, K.P.; Sahu, K.P.: Benefits of asymmetric underlap dual-k spacer hybrid fin field-effect transistor over bulk fin field-effect transistor. IET Circuits Devices Syst. 10, 441–447 (2016)CrossRefGoogle Scholar
  28. 28.
    Pradhan, K.P.; Mohapatra, S.K.; Sahu, P.K.; Behera, D.K.: Impact of high-k gate dielectric on analog and RF performance of nanoscale DG-MOSFET. Microelectron. J. 45, 144–151 (2014)CrossRefGoogle Scholar
  29. 29.
    Grewal, N.S.; Rattan, M.; Patterh, M.S.: A linear antenna array failure correction with null steering using firefly algorithm. Def. Sci. J. 64, 136–142 (2014)CrossRefGoogle Scholar
  30. 30.
    Kaur, R.; Rattan, M.: Optimization of the return loss of differentially fed microstrip patch antenna using ANN and firefly algorithm. Wireless Pers. Commun. 80, 1547–1556 (2015)CrossRefGoogle Scholar
  31. 31.
    Dhaliwal, B.S.; Pattnaik, S.S.: Performance comparison of bio-inspired optimization algorithms for Sierpinski gasket fractal antenna design. Neural Comput. Appl. 27, 585–592 (2016)CrossRefGoogle Scholar
  32. 32.
    Gaurav, A.; Gill, S.S.; Kaur, N.; Rattan, M.: Density gradient quantum corrections based performance optimization of triangular TG bulk FinFETs using ANN and GA. In: 20th International Symposium VLSI Design and Test (VDAT), Guwahati, pp. 1–5 (2016)Google Scholar
  33. 33.
    Kaur, J.; Gill, S.S.; Kaur, N.: Optimization of CMOS repeater driven interconnect RC line using genetic algorithm. J. Shanghai Univ. Nat. Sci. 22, 167–172 (2017)Google Scholar
  34. 34.
    Xie, X-F.; Zhang, W-J.; Bi, D-C.: Optimizing semiconductor devices by self-organizing particle swarm. In: Congress on Evolutionary Computation (CEC), Oregon, pp. 2017–2022 (2004)Google Scholar
  35. 35.
    Bendib, T.; Djeffal, F.: Electrical performance optimization of nanoscale double-gate MOSFETs using multiobjective genetic algorithms. IEEE Trans. Electron Dev. 58, 3743–3750 (2011)CrossRefGoogle Scholar
  36. 36.
    Bendib, T.; Djeffal, F.; Meguellati, M.: An optimized junctionless GAA MOSFET design based on multi-objective computation for high-performance ultra-low power devices. J. Semicond. 35, 074002 (2014)CrossRefGoogle Scholar
  37. 37.
    Bendib, T.; Djeffal, F.; Bentrcia, T.; Arar, D.; Lakhdar, N.: Multi-objective genetic algorithms based approach to optimize the small signal parameters of gate stack double gate MOSFET. In: Proceedings of World Congress on Engineering (WCE), London (2012)Google Scholar
  38. 38.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1992)CrossRefGoogle Scholar
  39. 39.
    Kennedy, J.; Eberhart, R.: Particle swarm optimization. In: Proceedings of International Conference on Neural Networks, Perth, WA, vol. 4, pp. 1942–1948 (1995)Google Scholar
  40. 40.
    Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) Stochastic Algorithms: Foundations and Applications (SAGA), pp. 169–178. Springer, Berlin (2009)CrossRefGoogle Scholar
  41. 41.
    Cogenda User’s Guides. Accessed 3 Aug 2015
  42. 42.
    Taur, Y.: CMOS design near the limit of scaling. IBM J. Res. Dev. 46, 213–222 (2002)CrossRefGoogle Scholar
  43. 43.
    Lombardi, C.; Manzini, S.; Saporito, A.; Vanzi, M.: A physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 7, 1164–1171 (1988)CrossRefGoogle Scholar
  44. 44.
    3D FinFET simulation with Density Gradient (DG) quantum correction model. Accessed 15 Nov 2016
  45. 45.
    Li, Y.; Hwang, C.-H.: Nanoscale transistors. In: Wiederrecht, G.P. (ed.) Handbook of Nanoscale Optics and Electronics, pp. 167–238. Elsevier, The Netherlands (2010)Google Scholar
  46. 46.
    Abraham, A.: Artificial neural networks. In: Sydenham, P.H., Thorn, R. (eds.) Handbook of Measuring System Design. Wiley, Hoboken (2005)Google Scholar
  47. 47.
    Mathworks\({}^{\textregistered }\). Neural Network Toolbox.
  48. 48.
    Cheung, N.J.; Ding, X.-M.; Shen, H.-B.: Adaptive firefly algorithm: parameter analysis and its application. PLoS ONE 9(1–12), e112634 (2014)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Electronics EngineeringI. K. Gujral Punjab Technical UniversityJalandharIndia
  2. 2.Electronics and Communication EngineeringGuru Nanak Dev Engineering CollegeLudhianaIndia

Personalised recommendations