Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1165–1184 | Cite as

Comparative Thermodynamic Study of Refrigerants to Select the Best Environment-Friendly Refrigerant for Use in a Solar Ejector Cooling System

  • Bourhan Tashtoush
  • Mai Bani Younes
Research Article - Mechanical Engineering

Abstract

In this study, a solar ejector cooling system is theoretically analyzed to evaluate refrigerants and determine their performance characteristics and environment-friendly nature for a fixed ejector geometry under a set of standard operating conditions. The results show that the refrigerant R1234yf is the best choice for the cycle, and is an environment-friendly refrigerant with thermo-physical properties similar to that of R134a. Moreover, it has a high entrainment ratio and is cheap when compared to other refrigerants, nonflammable, and safe. The results indicate that the cooling cycle COP increases during the day hours as the generator temperature increases and reaches a maximum value of 0.59 at an optimum generator temperature of 86 \({^{\circ }}\)C in the middle of the day. The overall efficiency of the system varied in the range 38–45%. Furthermore, it was found that increasing the generator pressure by 40% reduced the COP by 58.5% and increased the critical backpressure by 27.3%.

Keywords

Solar ejector cooling system TRNSYS software Refrigerants Entrainment ratio Generator temperature 

List of symbols

\({A}_{\mathrm{c} }\)

Area of solar collector (m\(^{2}\))

\({m}_{\mathrm{c} }\)

Solar collector mass flow rate (kg h\(^{-1}\) m\(^{-2}\))

\({m}_{\mathrm{p}}\)

Primary mass flow rate (kg s\(^{-1}\))

\({m}_{\mathrm{s}}\)

Secondary mass flow rate (kg s\(^{-1}\))

\(C_\mathrm{r}\)

Compression ratio

H

Enthalpy (kJ kg\(^{-1}\))

\({e}_{\mathrm{r}}\)

Expansion ratio

\({P}_{\mathrm{cri}}\)

Critical condenser back pressure (kPa)

\({P}_{\mathrm{e}}\)

Evaporator pressure (kPa)

\({A}_{3}\)

Area of mixing chamber (m\(^{2}\))

\({A}_{\mathrm{t}}\)

Area of nozzle throat (m\(^{2}\))

A

Primary flow location at the inlet of the nozzle

\({V}_\mathrm{s}\)

Volume of storage tank (\(\hbox {m}^{3}\))

G

Total irradiance (\(\hbox {W m}^{-2}\))

\(T_{\mathrm{g}}\)

Temperature of generator (\({^{\circ }}\)C)

\({T}_{\mathrm{c}}\)

Temperature of condenser (\({^{\circ }}\)C)

A_r

Ejector area ratio

\({C}_{\mathrm{p}}\)

Specific heat (\(\hbox {kJ kg}^{-1} \hbox {K}^{-1}\))

\({T}_{\mathrm{e}}\)

Temperature of evaporator (\({^{\circ }}\)C)

M

Mach number

R

Gas constant (kJ kg\(^{-1}\) K\(^{-1}\))

Q

Heat transfer rate (kW)

\({T}_{\mathrm{out~c}}\)

Temperature at the exit of solar collector (\({^{\circ }}\)C)

\({T}_\mathrm{out~storage}\)

Temperature at the exit of storage tank (\({^{\circ }}\)C)

\({T}_{\mathrm{a}}\)

Temperature of the ambient air (\({^{\circ }}\)C)

\({T}_{\mathrm{cri}}\)

Critical temperature (\({^{\circ }}\)C)

\({P}_{\mathrm{g}}\)

Generator pressure (kPa)

COP

Coefficient of performance

CFC

Chlorofluorocarbon

EES

Engineering equation solver

TRNSYS

TRaNsient SYstem Simulation Program

ODP

Ozone depletion potential

SECS

Solar ejector cooling system

GWP

Global warming potential

JUST

Jordan University of Science and Technology

1-D

One-dimensional

Subscript

G

Generator

E

Evaporator

C

Condenser

P

Primary flow

P1

Primary nozzle exit

\({p}_{\mathrm{y}}\)

Primary flow at section y–y

S

Secondary flow

M

Mixing section m–m

Greek symbols

\(\Omega \)

Entrainment ratio

\(\eta _{\mathrm{o}}\)

SECS overall efficiency

\(\eta _{\mathrm{sc}}\)

Efficiency for solar collector

\({\gamma }\)

Specific heat ratio

\({\phi }_{\mathrm{m}}\)

Coefficient of heat losses

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Scientific Research Support Fund in Jordan (Grant No. ENE/02/02/2012).

References

  1. 1.
    Etier, I.; Al-Tarabsheh, A.; Ababneh, M.: Analysis of solar radiation in Jordan. Jordan J. Mech. Ind. Eng. 4(6), 733–738Google Scholar
  2. 2.
    Vidal, H.; Colle, S.; Pereira, G.D.S.: Modelling and hourly simulation of a solar ejector cooling system. Appl. Therm. Eng. 26(7), 663–672 (2006)CrossRefGoogle Scholar
  3. 3.
    Keenan, J.H.: An investigation of ejector design by analysis and experiment. J. Appl. Mech. 17, 299 (1950)Google Scholar
  4. 4.
    Khalil, A.; Fatouh, M.; Elgendy, E.: Ejector design and theoretical study of R134a ejector refrigeration cycle. Int. J. Refrig. 34(7), 1684–1698 (2011)CrossRefGoogle Scholar
  5. 5.
    Abdulateef, J.M.; Murad, N.M.; Alghoul, M.A.; Zaharim, A.; Sopian, K.: Economic analysis of combines solar assisted ejector absorption refrigeration system. In: Proceedings of the 5th International Conference on Energy and Development - Environment - Biomedicine 2011, pp. 157–161 (2011)Google Scholar
  6. 6.
    Pollerberg, C.; Ali, A.H.; Dötsch, C.: Experimental study on the performance of a solar driven steam jet ejector chiller. Energy Convers. Manag. 49, 3318–3325 (2008)CrossRefGoogle Scholar
  7. 7.
    Al-Khalidy, N.: Performance of solar refrigerant ejector refrigerating machine. ASHRAE Trans. 103(1), 56–64 (1997)Google Scholar
  8. 8.
    Sokolov, M.; Hershgal, D.: Optimal coupling and feasibility of a solar-powered year-round ejector air conditioner. Sol. Energy 50(6), 507–516 (1993)CrossRefGoogle Scholar
  9. 9.
    Pollerberg, C.; Heinzel, A.; Weidner, E.: Model of a solar driven steam jet ejector chiller and investigation of its dynamic operational behavior. Sol. Energy 83, 732–742 (2009)CrossRefGoogle Scholar
  10. 10.
    Diaconu, B.M.: Energy analysis of a solar-assisted ejector cycle air conditioning system with low temperature thermal energy storage. Renew. Energy 37, 266–276 (2012)CrossRefGoogle Scholar
  11. 11.
    Ma, X.; Zhang, W.; Omer, S.A.; Riffat, S.B.: Experimental investigation of a novel steam ejector refrigerator suitable for solar energy applications. Appl. Therm. Eng. 30(11), 1320–1325 (2010)CrossRefGoogle Scholar
  12. 12.
    Tashtoush, B.; Alshare, A.; Al-Rifai, S.: Hourly dynamic simulation of solar ejector cooling system using TRNSYS for Jordanian climate. Energy Convers. Manag. 100, 288–299 (2015)CrossRefGoogle Scholar
  13. 13.
    Cizungu, K.; Mani, A.; Groll, M.: Performance comparison of vapour jet refrigeration system with environment friendly working fluids. Appl. Therm. Eng. 21(5), 585–598 (2001)CrossRefGoogle Scholar
  14. 14.
    Huang, B.J.; Chang, J.M.; Petrenko, V.A.; Zhuk, K.B.: A solar ejector cooling system using refrigerant R141b. Sol. Energy 64(4), 223–226 (1998)CrossRefGoogle Scholar
  15. 15.
    Selvaraju, A.; Mani, A.: Analysis of an ejector with environment friendly refrigerants. Appl. Therm. Eng. 24(5), 827–838 (2004)CrossRefGoogle Scholar
  16. 16.
    Nehdi, E.; Kairouani, L.; Elakhdar, M.: A solar ejector air-conditioning system using environment-friendly working fluids. Int. J. Energy Res. 32(13), 1194–1201 (2008)CrossRefGoogle Scholar
  17. 17.
    Roman, R.; Hernandez, J.I.: Performance of ejector cooling systems using low ecological impact refrigerants. Int. J. Refrig. 34(7), 1707–1716 (2011)CrossRefGoogle Scholar
  18. 18.
    Fong, K.F.; Lee, C.K.; Chow, T.T.: Improvement of solar-electric compression refrigeration system through ejector-assisted vapour compression chiller for space conditioning in subtropical climate. Energy Build. 43(12), 3383–3390 (2011)CrossRefGoogle Scholar
  19. 19.
    Alexis, G.K.; Karayiannis, E.K.: A solar ejector cooling system using refrigerant R134a in the Athens area. Renew. Energy 30(9), 1457–1469 (2005)CrossRefGoogle Scholar
  20. 20.
    Sun, D.W.; Eames, I.W.: Performance characteristics of HCFC-123 ejector refrigeration cycles. Int. J. Energy Res. 20(10), 871–885 (1996)CrossRefGoogle Scholar
  21. 21.
    Steven, B.J.; Claudio, Z.; Alberto, C.: The fluorinated olefin R-1234ze(z) as a high-temperature heat pumping refrigerant. Int. J. Refrig. 32, 1412–22 (2009)CrossRefGoogle Scholar
  22. 22.
    Kasaeian, A. B.; Daviran, S.: Performance analysis of solar combined ejector-vapor compression cycle using environmental friendly refrigerants. IIUM Eng. J. 14(1) (2013)Google Scholar
  23. 23.
    Li, H.; Cao, F.; Bu, X.; Wang, L.; Wang, X.: Performance characteristics of R1234yf ejector-expansion refrigeration cycle. Appl. Energy 121, 96–103 (2014)CrossRefGoogle Scholar
  24. 24.
    Chen, J.; Havtun, H.; Palm, B.: Screening of working fluids for the ejector refrigeration system. Int. J. Refrig. 47, 1–14 (2014)CrossRefGoogle Scholar
  25. 25.
    Sun, D.-W.: Comparative study of the performance of an ejector refrigeration cycle operating with various refrigerants. Energy Convers. Manag. 40, 873–84 (1999)CrossRefGoogle Scholar
  26. 26.
    Allouche, Y.; Varga, S.; Bouden, C.; Oliveira, A.: Dynamic simulation of an integrated solar-driven ejector based air conditioning system with PCM cold storage. Appl. Energy 190, 600–611 (2017)CrossRefGoogle Scholar
  27. 27.
    Carrillo, J.; Flor, F.; Lissén, J.: Thermodynamic comparison of ejector cooling cycles. Ejector characterisation by means of entrainment ratio and compression efficiency. Int. J. Refrig. 74, 371–384 (2017)CrossRefGoogle Scholar
  28. 28.
    Megdouli, K.; Tashtoush, B.M.; Nahdi, E.; Elakhdar, M.; Kairouani, L.; Mhimid, A.: Thermodynamic analysis of a novel ejector-cascade refrigeration cycles for freezing process applications and air-conditioning. Int. J. Refrig. 70, 108–118 (2016)CrossRefGoogle Scholar
  29. 29.
    Chen, W.; Shi, Ch; Zhang, S.; Chen, H.; Chong, D.; Yan, J.: Theoretical analysis of ejector refrigeration system performance under overall modes. Appl. Energy 185, 2074–2084 (2017)CrossRefGoogle Scholar
  30. 30.
    Fang, Y.; Croquer, S.; Poncet, S.; Aidoun, Z.; Bartosiewicz, Y.: Drop-in replacement in a R134 ejector refrigeration cycle by HFO refrigerants. Int. J. Refrig. 77, 87–98 (2017)CrossRefGoogle Scholar
  31. 31.
    Yataganbaba, A.; Kilicarslan, A.; Kurtbas, I.: Exergy analysis of R1234yf and R1234ze as R134a replacements in a two evaporator vapour compression refrigeration system. Int. J. Refrig. 60, 26–37 (2015)CrossRefGoogle Scholar
  32. 32.
    Tashtoush, B.; Alshare, A.; Al-Rifai, S.: Performance study of ejector cooling cycle at critical mode under superheated primary flow. Energy Convers. Manag. 94, 300–310 (2015)CrossRefGoogle Scholar
  33. 33.
    Huang, B.; Chang, J.; Wang, C.; Petrenko, V.: A 1D analysis of ejector performance. Int. J. Refrig. 22, 354–364 (1999)CrossRefGoogle Scholar
  34. 34.
    Calm, J.M.; Hourahan, G.C.: Refrigerant data summary. Eng. Syst. 18(11), 74–88 (2001)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Faculty of EngineeringJordan University of Science and TechnologyIrbidJordan

Personalised recommendations