Advertisement

Study of Morphological and Mechanical Properties of PBT/PTT Blends and Their Nanocomposites and Their Correlation

  • Ranjana Sharma
  • Purnima Jain
  • Susmita Dey Sadhu
Research Article - Mechanical Engineering
  • 15 Downloads

Abstract

Impact modified PBT/PTT blends based nanocomposites having organoclay content varying from 2, 3 and 5 wt% were prepared using corotating twin-screw extruder. Organoclay (Cloisite 30B) was used as nanofiller. Ultra-low-density polyethylene-grafted glycidyl methacrylate (ULDPE-g-GMA) was used as an impact modifier to toughen the polymeric matrices. In all the prepared nanocomposites, the amount of impact modifier (ULDPE-g-GMA) remains constant, i.e., 2 wt%. Izod impact testing showed that only 2 wt% impact modifier (ULDPE-g-GMA) was enough to improve the notched Izod impact strength of the neat PBT and neat PTT by 85.6 and 98.6 %, respectively. It shows an excellent toughening of PBT and PTT with ULDPE- g-GMA rubber. It was further found that the incorporation of only 3 wt% organoclay significantly improved the tensile strength, tensile modulus values of PBT/PTT blends. The result of FEG-SEM indicated that nanocomposite with 3 wt% organoclay in PBT/PTT/2wt% ULDPE-g-GMA did not show phase separation. It showed that 3 wt% organoclay was homogeneously dispersed in impact modified PBT/PTT blends based nanocomposites. POM studies revealed that the well-defined spherulites are present in neat PBT and neat PTT when \(T_{\mathrm{c}}\) was 205 \({^{\circ }}\)C.

Keywords

PBT PTT Nanocomposites Blends Morphology Mechanical 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful to ICT, Matunga, for their generous support for the compounding facility. The authors would like to thank DSM Engineering Plastics, Futura Polyesters Ltd. and Pluss Polymers, India, for kind donation of the PBT, PTT and the impact modifier (ULDPE-g-GMA). Authors are also very grateful to SAIF, IIT, Bombay, for FEG-SEM and XRD measurements. Authors would also like to thank Netaji Subhas Institute of Technology, University of Delhi, New Delhi, for financial support.

References

  1. 1.
    Valapa, R.B.; Loganathan, S.; Pugazhenthi, G.; Thomas, S.; Varghese, T.O.: Clay- Polymer Nanocomposites, Chapter 2—An Overview of Polymer-Clay Nanocomposites. Available online 4 August 2017, pp. 29–81. Matthew Deans. ISBN: 978-0-323-46153-5.Google Scholar
  2. 2.
    Piesowicz, E.; Irska, I.; Bratychak, M.; Roslaniec, Z.: Poly(butylene terephthalate)/carbon nanotubes nanocomposites part i. Carbon nanotubes functionalization and in situ synthesis. Polimery 60, 11–12 (2015).  https://doi.org/10.14314/polimery.2015.680 Google Scholar
  3. 3.
    Paszkiewicz, S.; Szymczyk, A.; Livanov, K.; Wagner, H.D.; Roslaniec, Z.: Enhanced thermal and mechanical properties of poly(trimethylene terephthalate-block-poly(tetramethylene oxide) segmented copolymer based hybrid nanocomposites prepared by in situ polymerization via synergy effect between SWCNTs and graphene nanoplatelets. Express Polym. Lett. 9(6), 509–524 (2015).  https://doi.org/10.3144/expresspolymlett.2015.49 CrossRefGoogle Scholar
  4. 4.
    Prateek,; Thakur, V.K.; Gupta, R.K.: Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem. Rev. 116(7), 4260–4316 (2016).  https://doi.org/10.1021/acs.chemrev.5b00495
  5. 5.
    Cao, Y.; Irwin, P.C.; Younsi, K.: The future of nanodielectrics in the electrical power industry. IEEE Trans. Dielectr. Electr. Insul. 11(5), 797–807 (2004)CrossRefGoogle Scholar
  6. 6.
    Murali, R.S.; Sankarshana, T.; Sridhar, S.: Air separation by polymer-based membrane technology. Sep. Purif. Rev. 42(2), 130–186 (2013).  https://doi.org/10.1080/15422119.2012.686000 CrossRefGoogle Scholar
  7. 7.
    Yampolskii, Y.: Polymeric gas separation membranes. Macromolecules 45(2), 3298–3311 (2012).  https://doi.org/10.1021/ma300213b CrossRefGoogle Scholar
  8. 8.
    Joshi, M.; Chatterjee, U.: Indian Institute of Technology, New Delhi, India. Chapter 8: Advanced Composite Materials for Aerospace Engineering- Processing Properties, and Applications. Woodhead Publishing Series in Composites Science and Engineering.  https://doi.org/10.1016/B978-0-08-100037-3.00008-0
  9. 9.
    Okekea, C.P.; Thite, A.N.; Durodola, J.F.; Greenrod, M.T.: Hyperelastic polymer material models for robust fatigue performance of automotive LED lamps. Proc. Struct. Integr. 5, 600–607 (2017).  https://doi.org/10.1016/j.prostr.2017.07.022 CrossRefGoogle Scholar
  10. 10.
    Kumar, S.K.; Benicewicz, B.C.; Vaia, R.A.; Winey, K.I.: 50th anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules 50(3), 714–731 (2017).  https://doi.org/10.1021/acs.macromol.6b02330 CrossRefGoogle Scholar
  11. 11.
    Nielsen, L.E.; Landel, R.F.: Mechanical Properties of Polymers and Composites, 2nd edn, revised and expanded. Marcel Dekker Inc., New York, Basel, Hong Kong (1974)Google Scholar
  12. 12.
    Shah, V.: Handbook of Plastics Testing and Failure Analysis, 3rd edn, Chapter 2. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  13. 13.
    Powell, C.E.; Beall, G.W.: Physical properties of polymer/clay nanocomposites. Curr. Opin. Solid State Mater. Sci. 10(2), 73–80 (2006)CrossRefGoogle Scholar
  14. 14.
    Pegoretti, A.; Kolarik, J.; Peroni, C.; Migliaresi, C.: Recycled poly (ethylene terephthalate)/layered silicate nanocomposites: morphology and tensile mechanical properties. Polymer 45(8), 2751–2759 (2004)CrossRefGoogle Scholar
  15. 15.
    Sanchez-Solis, A.; Garcia-Rejon, A.; Manero, O.: Production of nanocomposites of PET-montmorillonite clay by an extrusion process. Macromol. Symp. 192(1), 281–292 (2003).  https://doi.org/10.1002/masy.200390038 CrossRefGoogle Scholar
  16. 16.
    Chisholm, B.J.; Moore, R.B.; Barber, G.; Khouri, F.; Hempstead, A.; Larsen, M.; et al.: Nanocomposites derived from sulfonated poly(butylene terephthalate). Macromolecules 35, 5508–5516 (2002).  https://doi.org/10.1021/ma012224n CrossRefGoogle Scholar
  17. 17.
    Chang, J.-H.; An, Y.U.; Ryu, S.C.; Giannelis, E.P.: Synthesis of poly(butylene terephthalate) nanocomposite by in-situ interlayer polymerization and characterization of its fiber (I). Polym. Bull. 51, 69–75 (2003)CrossRefGoogle Scholar
  18. 18.
    Hotta, S.; Paul, D.R.: Nanocomposites formed from linear low density polyethylene and organoclay. Polymer 45(22), 7639–7654 (2004).  https://doi.org/10.1016/j.polymer.2004.08.059 CrossRefGoogle Scholar
  19. 19.
    Chow, W.S.: Cyclic extrusion of poly(butylene terephthalate)/organo-montmorillonite nanocomposites: thermal and mechanical retention properties. J. Appl. Polym. Sci. 110, 1642–1648 (2008).  https://doi.org/10.1002/app.28804 CrossRefGoogle Scholar
  20. 20.
    Narkhede, Jitendra S.; Shimpi, N.G.; Shertukde, V.V.: Mechanical properties and rheological behavior of poly (butylene terephthalate) (PBT)/oligomeric modified MMT clay nanocomposites. J. Polym. Mater. 31(2), 184–197 (2014)Google Scholar
  21. 21.
    Cho, H.W.; Lee, J.S.; Prabu, A.A.; Kim, K.J.: Physical properties of poly(trimethylene terephthalate)/organoclay nanocomposites obtained via melt compounding and in situ polymerization. Polym. Compos. 29(12), 1328–1336 (2008)CrossRefGoogle Scholar
  22. 22.
    Bassett, D.C.: Principles of Polymer Morphology. Cambridge University Press, Cambridge (2003)Google Scholar
  23. 23.
    Sharma, R.; Jain, P.; Upadhyay, P.K.: Spectroscopic studies of nanocomposites based on impact modified PBT/PTT blends loaded by organoclay. Int. J. Adv. Technol. Eng. Sci. 4(5), 269–286 (2016)Google Scholar
  24. 24.
    Garmabi, H.; Kamal, M.R.: Improved barrier and mechanical properties of laminar polymer blends. J. Plast Film Sheeting 15(2), 120–130 (1999).  https://doi.org/10.1177/875608799901500205 CrossRefGoogle Scholar
  25. 25.
    Fornes, T.D.; Yoon, P.J.; Keskkula, H.; Paul, D.R.: Nylon 6 nanocomposites: the effect of matrix molecular weight. Polymer 42(25), 9929–9940 (2001)CrossRefGoogle Scholar
  26. 26.
    Sharma, R.; Jain, P.: Melt rheology of impact modified PBT and its nanocomposites. J. Appl. Phys. Sci. Int. 7(1), 42–50 (2016)Google Scholar
  27. 27.
    Hajibaba, A.; Masoomi, M.; Nazockdast, H.: Morphology and rheological behavior of poly(butylene terephthalate)/polypropylene blends filled by two types of organoclays. J. Thermoplast. Compos. Mater. 30(5), 646–661 (2015).  https://doi.org/10.1177/0892705715610403 CrossRefGoogle Scholar
  28. 28.
    Liu, Z.J.; Chen, K.Q.; Yan, D.Y.: Nanocomposites of poly(trimethylene terephthalate) with various organoclays: morphology, mechanical and thermal properties. Poly Test. 23, 323–331 (2004)CrossRefGoogle Scholar
  29. 29.
    Acierno, D.; Scarfato, P.; Amendola, E.; Nocerino, G.; Costa, G.: Preparation and characterization of PBT nanocom-posites compounded with different montmorillonites. Poly. Eng. Sci. 44(6), 1012–1018 (2004)CrossRefGoogle Scholar
  30. 30.
    Chang, J.H.; An, Y.U.; Kim, S.J.; Im, S.: Poly (butylene terephthalate)/organoclay nanocomposites prepared by in situ interlayer polymerization and its fiber (II). Polymer 44(19), 5655–5661 (2003)CrossRefGoogle Scholar
  31. 31.
    Xie, W.; Gao, Z.M.; Pan, W.P.; Hunter, D.; Singh, A.; Vaia, R.: Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem. Mater. 13(9), 2979–2990 (2001).  https://doi.org/10.1021/cm010305s CrossRefGoogle Scholar
  32. 32.
    Sharma, R.; Jain, P.; Sadhu, S.D.; Kaur, B.: Mechanical and thermal properties of impact modified PBT blends and impact modified PBT nanocomposites. J. Polym. Eng. 33, 489–500 (2013)CrossRefGoogle Scholar
  33. 33.
    Hong, P.D.; Chung, W.T.; Hsu, C.F.: Crystallization kinetics and morphology of poly (trimethylene terephthalate). Polymer 43(11), 3335–3343 (2002)CrossRefGoogle Scholar
  34. 34.
    Chan, C.H.; Sarathchandran; Thomas, S.: Chapter 2, Intech, open science.  https://doi.org/10.5772/50317
  35. 35.
    Krutphun, P.; Supaphol, P.: Miscibility, isothermal crystallization/melting behavior, and morphology of ploy(trimethylene terephthalate)/poly(butylenes terephthalate) blends. Adv. Sci. Techol. 54, 243–248 (2008)CrossRefGoogle Scholar
  36. 36.
    Guijuan, L.; Kunyan, W.; Xueli, X.; Baojie, Y.; Shugang, L.; Yanmo, C.: Crystallization behavior and crystal morphology of PTT/PBT blends. J. Macromol. Sci. Part B: Phys. 45(4), 485–492 (2006).  https://doi.org/10.1080/00222340600769600 CrossRefGoogle Scholar
  37. 37.
    Wan, T.; Chen, L.; Chua, Y.C.; Lu, X.: Crystalline morphology and isothermal crystallization kinetics of poly (ethylene terephthalate)/clay nanocomposites. J. Appl. Poly. Sci. 94(4), 1381–1388 (2004)CrossRefGoogle Scholar
  38. 38.
    Arostegui, A.; Nazabal, J.: Critical inter-particle distance dependence and super-toughness in poly(butylene terephthalate)/grafted poly(ethylene-octene) copolymer blends by means of polyarylate addition. Polymer 44(18), 5227–5237 (2003)CrossRefGoogle Scholar
  39. 39.
    Sun, S.; Zhang, F.; Yan, Fu; Chao, Zhou; Zhang, H.: Properties of poly(butylene terephthalate)/bisphenol a polycarbonate blends toughening with epoxy-functionalized acrylonitrile-butadiene-styrene particles. J. Macromol. Sci., Part B: Phys. 52(6), 861–872 (2013)CrossRefGoogle Scholar
  40. 40.
    Ishak, Z.A.M.; Chow, W.S.; Rochmadi, T.T.; Kusmono: Influence of SEBS-g-MA on morphology, mechanical, andthermal properties of PA6/PP/organoclay nanocomposites. Eur. Polym. J. 44, 1023–1039 (2008)Google Scholar
  41. 41.
    Gonzalez-Montiel, A.; Keskkula, H.; Paul, D.R.: Impact-modified nylon 6/polypropylene blends: 1. Morphology-property relationships. Polymer 36(24), 4587–4603 (1995)CrossRefGoogle Scholar
  42. 42.
    Vocke, C.; Anttila, U.; Seppala, J.: Compatibilization of polyethylene/polyamide 6 blends with oxazoline-functionalized polyethylene and styrene ethylene/butylene styrene copolymer (SEBS). J. Appl. Polym. Sci. 72(11), 1443–1450 (1999)CrossRefGoogle Scholar
  43. 43.
    Al-Omairi, L.M.: Title of dissertation. Crystallization, Mechanical, Rheological and Degradation Behavior of Polytrimethylene terephthalate, Polybutylene terephthalate and Polycarbonate blend. Ph.D thesis, School of Civil, Environmental and Chemical Engineering; RMIT University, Melbourne, Australia (2010).Google Scholar
  44. 44.
    Madkarni, V.M.; Rath, A.K.: Handbook of Thermoplastic Polyesters: Homopolymers, Copolymers, Blends and Composites. In: Fakiron, S. (ed.) Chapter 19: Blends of Thermoplastic Polyesters, Section 6–8, Published online 28 Jan, pp. 835-869. Wiley (2005).Google Scholar
  45. 45.
    Mert, M.; Yilmazer, U.: Comparison of polyamide 66 organoclay binary and ternary nanocomposites. Adv. Polym. Technol. 28(3), 155–164 (2009)CrossRefGoogle Scholar
  46. 46.
    Kumar, S.K.; Benicewicz, B.C.; Vaia, R.A.; Winey, K.I.: 50th anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules 50(3), 714–731 (2017)CrossRefGoogle Scholar
  47. 47.
    Contreras, V.; Cafiero, M.; Da Silva, S.; Rosales, C.; Perera, R.; Matos, M.: Characterization and tensile properties of ternary blends with PA-6 nanocomposites. Polym. Eng. Sci. 46(8), 1111–1120 (2006)CrossRefGoogle Scholar
  48. 48.
    Hassan, A.; Othman, N.; Wahit, M.U.; Wei, L.J.; Rahmat, A.R.; Ishak, M.; Ariffin, Z.: Maleic anhydride polyethylene octene elastomer toughened polyamide 6/polypropylene nanocomposites: mechanical and morphological properties. Macromol. Symp. 239(1), 182–191 (2006)CrossRefGoogle Scholar
  49. 49.
    Masenelli-Varlot, K.; Reynaud, E.; Vigier, G.; Varlet, J.: Mechanical properties of clay-reinforced polyamide. J. Polym. Sci. B: Polym. Phys. 40(3), 272–283 (2002).  https://doi.org/10.1002/polb.10088 CrossRefGoogle Scholar
  50. 50.
    Narkhede, J.S.; Shertukde, V.V.: Mechanical properties and rheological behavior of poly(butylene terephthalate)/clay nanocomposites with different organoclays. J. Appl. Polym. Sci. 119(2), 1067–1074 (2011).  https://doi.org/10.1002/app.32616 CrossRefGoogle Scholar
  51. 51.
    Lee, J.W.; Kim, M.H.; Choi, W.M.; Park, O.O.: Effects of organoclay modification on microstructure and properties of polypropylene-organoclay nanocomposites. J. Appl. Polym. Sci. 99(4), 1752–1759 (2006)CrossRefGoogle Scholar
  52. 52.
    Chang, J.-H.; Mun, M.K.; Lee, I.C.: Poly(ethylene terephthalate) nanocomposite fibers by in situ polymerization: the thermomechanical properties and morphology. J. Appl. Polym. Sci. 98(5), 2009–2016 (2005).  https://doi.org/10.1002/app.22382 CrossRefGoogle Scholar
  53. 53.
    Gedde, U.W.: Polymer Physics. Chapman & Hall, London (1999)CrossRefGoogle Scholar
  54. 54.
    Tjong, S.C.; Bao, S.P.; Liang, G.D.: Polypropylene/montmorillonite nanocomposites toughened with SEBS-g-MA: structure–property relationship. J. Polym. Sci. Part B: Polym. Phys. 43(21), 3112–3126 (2005)CrossRefGoogle Scholar
  55. 55.
    Gonzalez, I.; Eguiazabal, J.I.; Nazabal, J.: Nanocomposites based on a polyamide 6/maleated styrene-butylene-co-ethylene-styrene blend: effects of clay loading on morphology and mechanical properties. Eur. Polym. J. 42(11), 2905–2913 (2006)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Applied SciencesBirla Institute of Technology, Offshore CampusRas Al KhaimahUAE
  2. 2.School of Applied Sciences, Netaji Subhas Institute of TechnologyUniversity of DelhiDwarka, New DelhiIndia
  3. 3.Bhaskaracharya College of Applied SciencesUniversity of DelhiNew DelhiIndia

Personalised recommendations