Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 5, pp 4359–4372 | Cite as

Impact of Upstream Bridge Pier on the Scouring Around Adjacent Downstream Bridge Pier

  • Rajib Das
  • Subhasish DasEmail author
  • Hasanur Jaman
  • Asis Mazumdar
Research Article - Civil Engineering
  • 57 Downloads

Abstract

The study aspires to investigate a relative scour condition around three-pier group. It identifies the upstream downstream scour geometries when two tandem piers are placed inline and third pier is placed eccentrically in middle of tandem piers. Laboratory scale experiments were physically performed by gradually varying the intermediate longitudinal spacing in between tandem piers. After each experimental run, the scour formation around the pier group and the dune formation downstream of the pier group are investigated. The main aim here is to experimentally identify and highlight the nature and location of scour formed around and also to identify the location of the dune formed downstream of this pier group due to combined interference of flow. The spacing between the inline piers were varied to identify which relative spacing produces the maximum scour. A detailed investigation shows significant effect of inline pier spacing on scour parameters. It was observed that for such three pier combinations, the scour so formed near staggered piers was found maximum and around tandem downstream pier was found minimum. It confirms the shifting of sediment load away from this pier group and is deposited downstream, drifting more towards the staggered pier that is towards channel sidewall. Equations are proposed with respect to the pier spacing between tandem piers to evaluate the scour depth around individual pier of the pier group combination.

Keywords

Pier Inline pier Eccentric pier Scouring depth Scouring volume 

List of Symbols

\(a_\mathrm{s}\)

Scouring hole surface area for three pier’s group at equilibrium \((\hbox {m}^{2})\)

\(a_\mathrm{ss}\)

Scouring hole surface area for one pier at equilibrium \((\hbox {m}^{2})\)

A

Y intercept

b

Pier diameter or width (m)

\(b_\mathrm{cf},~ b_\mathrm{cr}\)

Characteristic widths of upstream tandem and downstream tandem piers, respectively (m)

B

Slope of the regression line

\(d_\mathrm{se}\)

Maximum depth for equilibrium scouring for middle eccentric pier (m)

\(d_\mathrm{sf}\)

Maximum depth for equilibrium scouring for tandem front pier (m)

\(d_\mathrm{sr}\)

Maximum depth for equilibrium scouring for tandem rear pier (m)

\(d_{\mathrm{ss}}\)

Maximum depth for equilibrium scouring for one pier (m)

\(d_{xx}\)

xx indicates three different piers: tandem front, eccentric middle and tandem rear piers

\(d_{16}\)

16% thinner sand grain diameter (mm)

\(d_{50}\)

Median sand grain diameter (mm)

\(d_{90}\), \(d_{84}\)

90 and 84% thinner sand grain diameter, respectively (mm)

e

Centre-to-centre distance in between upstream tandem and middle eccentric piers (m), 3b

g

Gravity acceleration \((\hbox {m/s}^{2})\)

\(g^{\prime }\)

Relative gravity [\(g^{\prime }=g(\rho _{s}-\rho )/\rho \)]

h

Approach depth (m)

\(K_\mathrm{sf}\), \(K_\mathrm{sr}\)

Shape co-efficient of upstream tandem and downstream tandem piers

\(b_\mathrm{e}\)

Effective widths of pier (m)

l

Intermediate longitudinal spacing (towards flow) in between upstream tandem and middle pier (m)

2l

Longitudinal spacing (towards flow) in between upstream tandem and downstream tandem pier (m)

\(l_\mathrm{s}\)

Maximum length for equilibrium scouring for three-pier group (m)

\(l_\mathrm{ss}\)

Maximum length for equilibrium scours for one pier (m)

L

Maximum transported sediment length for three-pier group at equilibrium (m)

\(L_\mathrm{ss}\)

Maximum transported sediment length for one pier at equilibrium (m)

Re

Flow Reynolds number, \(UR/\nu \)

s

Particles relative density, \(\rho _{s}/\rho \)

\(u_\mathrm{c}\)

Threshold/critical velocity (m/s)

\(u_{*}\)

Shear velocity (m/s)

U

Approaching velocity (m/s)

Open image in new window

Hole volume for equilibrium scouring for three-pier group (\(\hbox {m}^{3}\))

Open image in new window

Hole volume for equilibrium scouring for one pier \((\hbox {m}^{3})\)

\(w_\mathrm{s}\)

Maximum width for equilibrium scouring for three-pier group (m)

\(w_\mathrm{ss}\)

Maximum width for equilibrium scouring for one pier (m)

X

Independent variable

Y

Linear regression function (dependant variable)

\(\rho \)

Water density (\(\hbox {kg/m}^{3}\))

\(\rho _{\mathrm{s}}\)

Bed particle density \((\hbox {kg/m}^{3})\)

\(\sigma _{\mathrm{g}}\)

Grain size standard deviation, \(\sqrt{{d_{84}}/{d_{16}}}\)

\(C_\mathrm{sf}\), \(C_\mathrm{se}\), \(C_\mathrm{sr}\)

Coefficients

\(D_\mathrm{sf}\), \(D_\mathrm{se}\), \(D_\mathrm{sr}\), D

Coefficients

\(C^{\prime }_\mathrm{sf}\), \(C^{\prime }_\mathrm{se}\), \(C^{\prime }_\mathrm{sr}\)

Coefficients

\(D^{\prime }_\mathrm{sf}\), \(D^{\prime }_\mathrm{se}\), \(D^{\prime }_\mathrm{sr}\), \(D^{\prime }\)

Coefficients

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Breusers, H.N.C.; Nicollet, G.; Shen, H.W.: Local scour around cylindrical piers. J. Hydraul. Res. 15(3), 211–252 (1977)CrossRefGoogle Scholar
  2. 2.
    Raudkivi, A.J.; Ettema, R.: Clear-water scour at cylindrical piers. J. Hydraul. Eng. 109(3), 338–350 (1983)CrossRefGoogle Scholar
  3. 3.
    Breusers, H.N.C.; Raudkivi, A.J.: Scouring: IAHR Hydraulic Structures Design Manual, vol. 2. A.A. Balkema, Rotterdam (1991)Google Scholar
  4. 4.
    Melville, B.W.: Local scour at bridge abutments. J. Hydraul. Eng. 118(4), 615–631 (1992)CrossRefGoogle Scholar
  5. 5.
    Dey, S.: Local scour at piers, part 1: a review of development of research. Int. J. Sedim. Res. 12(2), 23–44 (1997)Google Scholar
  6. 6.
    Hoffmans, G.J.C.M.; Verheij, H.C.: Scour Manual. A.A. Balkema, Rotterdam (1997)Google Scholar
  7. 7.
    Melville, B.W.; Chiew, Y.M.: Time scale for local scour at bridge piers. J. Hydraul. Eng. 125(1), 59–65 (1999)CrossRefGoogle Scholar
  8. 8.
    Das, R.; Khwairakpam, P.; Das, S.; Mazumdar, A.: Clear-water local scour around eccentric multiple piers to shift the line of sediment deposition. Asian J. Water Environ. Pollut. 11(3), 47–54 (2014)Google Scholar
  9. 9.
    Das, S.; Das, R.; Mazumdar, A.: Variations of clear water scour geometry at piers of different effective widths. Turk. J. Eng. Environ. Sci. 38(1), 97–111 (2014)CrossRefGoogle Scholar
  10. 10.
    Solaimani, N.; Amini, A.; Banejad, H.; Taherei, G.: The effect of pile spacing and arrangement on bed formation and scour hole dimensions in pile groups. Int. J. River Basin Manag. 15(2), 219–225 (2017)CrossRefGoogle Scholar
  11. 11.
    Melville, B.W.; Coleman, S.E.: Bridge Scour. Water Resources, LLC, Highlands Ranch (2000)Google Scholar
  12. 12.
    Ashtiani, A.B.; Beheshti, A.A.: Experimental investigation of clear-water local scour at pile groups. J. Hydraul. Eng. 132(10), 1100–1104 (2006)CrossRefGoogle Scholar
  13. 13.
    Das, S.; Ghosh, S.; Mazumdar, A.: Kinematics of horseshoe vortex in a scour hole around two eccentric triangular piers. Int. J. Fluid. Mech. Res. 41(4), 296–317 (2014)CrossRefGoogle Scholar
  14. 14.
    Das, S.; Ghosh, R.; Das, R.; Mazumdar, A.: Clear water scour geometry around circular piers. Ecol. Environ. Conserv. 20(2), 479–492 (2014)Google Scholar
  15. 15.
    Pagliara, S.; Palermo, M.; Azizi, R.: Scour control at bridge piers using macro-roughness elements. In: Proceedings of the Institution of Civil Engineers-Water Management, vol. 8(WM4), pp. 174–188 (2015)Google Scholar
  16. 16.
    Dey, S.; Raikar, R.V.: Characteristics of horseshoe vortex in developing scour holes at piers. J. Hydraul. Eng. 133(4), 399–413 (2007)CrossRefGoogle Scholar
  17. 17.
    Khan, M.; Tufail, M.; Ajmal, M.; Haq, Z.U.; Kim, T.W.: Experimental analysis of the scour pattern modeling of scour depth around bridge piers. Arab. J. Sci. Eng. 42(9), 4111–4130 (2017)CrossRefGoogle Scholar
  18. 18.
    Zampieri, P.; Zanini, M.A.; Faleschini, F.; Hofer, L.; Pellegrino, C.: Failure analysis of masonry arch bridges subject to local pier scour. Eng. Fail. Anal. 79, 71–384 (2017)CrossRefGoogle Scholar
  19. 19.
    Das, S.; Das, R.; Mazumdar, A.: Circulation characteristics of horseshoe vortex in the scour region around circular piers. Water Sci. Eng. 6(1), 59–77 (2013)Google Scholar
  20. 20.
    Das, S.; Midya, R.; Das, R.; Mazumdar, A.: A study of wake vortex in the scour region around a circular pier. Int. J. Fluid Mech. Res. 40(1), 42–59 (2013)CrossRefGoogle Scholar
  21. 21.
    Sheppard, D.M.; Zhao, G.; Copps, T.H.: Local scour near multiple pile piers in steady currents. In: Proceedings of the American Society of Civil Engineers, International Conference on Water Resources Engineering, San Antonio, pp. 1804–1805 (1995)Google Scholar
  22. 22.
    Sumner, D.; Wang, S.S.T.; Price, S.J.; Paidoussis, M.P.: Fluid behavior of side-by-side circular cylinders in steady cross-flow. J. Fluids Struct. 13(3), 309–338 (1999)CrossRefGoogle Scholar
  23. 23.
    Akilli, H.; Akar, A.; Karakus, C.: Flow characteristics of circular cylinders arranged side-by-side in shallow water. Flow Meas. Instrum. 15(4), 187–189 (2004)CrossRefGoogle Scholar
  24. 24.
    Coleman, S.E.: Clearwater local scour at complex piers. J. Hydraul. Eng. 131(4), 330–334 (2005)CrossRefGoogle Scholar
  25. 25.
    Ashtiani, A.B.; Ghorghi, B.Z.; Beheshti, A.A.: Experimental investigation of clear-water local scour of compound piers. J. Hydraul. Eng. 136(6), 343–351 (2010)CrossRefGoogle Scholar
  26. 26.
    Ashtiani, A.B.; Kordkandi, A.A.: Flow field around side-by-side piers with and without a scour hole. Eur. J. Mech. B Fluids 36, 152–166 (2012)CrossRefzbMATHGoogle Scholar
  27. 27.
    Das, S.; Mazumdar, A.: Evaluation of hydrodynamic consequences for horseshoe vortex system developing around two eccentrically arranged identical piers of diverse shapes. KSCE J. Civ. Eng. 22(7), 2300–2314 (2018).  https://doi.org/10.1007/s12205-017-1842-9 CrossRefGoogle Scholar
  28. 28.
    Raudkivi, A.J.: Loose Boundary Hydraulics. A.A. Balkema, Rotterdam (1998)Google Scholar
  29. 29.
    Graf, W.H.: Fluvial Hydraulics: Flow and Transport Processes in Channels of Simple Geometry. Wiley, Hoboken (2003)Google Scholar
  30. 30.
    Das, S.; Mazumdar, A.: Turbulence flow field around two eccentric circular piers in scour hole. Int. J. River. Basin Manag. 13(3), 343–361 (2015)CrossRefGoogle Scholar
  31. 31.
    Vijayasree, B.A.; Eldho, T.I.: Experimental study of scour around bridge piers of different arrangements with same aspect ratio. Scour and Erosion—Proceedings of the 8th International Conference on Scour and Erosion (ICSE 2016). Oxford, pp. 889–895 (2016)Google Scholar
  32. 32.
    Das, S.; Das, R.; Mazumdar, A.: Comparison of local scour characteristics around two eccentric piers of different shapes. Arab. J. Sci. Eng. 41(4), 1199–1213 (2016)CrossRefGoogle Scholar
  33. 33.
    Michael, S.A.; Mohamed, G.M.; Mohamed, S.B.A.M.: Wake vortex scour at bridge piers. J. Hydraul. Eng. 117(7), 891–904 (1991)CrossRefGoogle Scholar
  34. 34.
    Jaman, H.; Das, S.; Kuila, A.; Mazumdar, A.: Hydrodynamic flow patterns around three inline eccentrically arranged circular piers. Arab. J. Sci. Eng. 42(9), 3973–3990 (2017)CrossRefGoogle Scholar
  35. 35.
    Yalin, M.S.: Mechanics of Sediment Transport. Pergamon, New York (1977)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.School of Water Resources EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations