Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 2265–2280 | Cite as

Fractional-Order Sliding Mode Control for D-STATCOM Connected Wind Farm Based DFIG Under Voltage Unbalanced

  • K. D. E. KerroucheEmail author
  • L. Wang
  • A. Mezouar
  • L. Boumediene
  • A. Van Den Bossche
Research Article - Electrical Engineering
  • 36 Downloads

Abstract

This paper studies the use of distribution static synchronous compensator (D-STATCOM) integrated with wind farm based on doubly fed induction generators. The short-term energy storage system based on a supercapacitor is introduced in this study to improve the operation of D-STATCOM. The dynamic performances of the grid-connected wind farm with D-STATCOM are enhanced by the proposed control scheme, which is based on fractional-order sliding mode control theory with dual-sequence decomposition technique. Some results of simulation show that, under an unbalanced grid voltage conditions, the proposed control strategy for the D-STATCOM not only eliminates effectively the oscillations of the active and reactive powers exchanged between the wind generator and the grid but also achieves the symmetrical and sinusoidal grid currents with less harmonics.

Keywords

Doubly fed induction generator D-STATCOM Fractional-order sliding mode control LVRT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kerrouche, K.; Mezouar, A.; Boumedien, L.: A simple and efficient maximized power control of DFIG variable speed wind turbine. In: ICSC IEEE Conference, pp. 894–899 (2013)Google Scholar
  2. 2.
    Boutoubat, M.; Mokrani, L.; Machmoum, M.: Control of a wind energy conversion system equipped by a DFIG for active power generation and power quality improvement. Renew. Energy 50, 378–386 (2013)CrossRefGoogle Scholar
  3. 3.
    Kerrouche, K.D.E.; Mezouar, A.; Boumediene, L.; Van Den Bossche, A.: Modeling and Lyapunov-designed based on adaptive gain sliding mode control for wind turbines. J. Power Technol. 96, 124 (2016)Google Scholar
  4. 4.
    Rubio, J.J.; Lopez, J.; Pacheco, J.; Encinas, R.: Control of two electrical plants. Asian J. Control (2017).  https://doi.org/10.1002/asjc.1640 zbMATHGoogle Scholar
  5. 5.
    Pan, Y.; Sun, T.; Yu, H.: Composite adaptive dynamic surface control using online recorded data. Int. J. Robust Nonlinear Control 26(18), 3921–3936 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Domínguez-García, J.; Gomis-Bellmunt, O.; Trilla-Romeroa, L.; Junyent-Ferré, A.: Indirect vector control of a squirrel cage induction generator wind turbine. Comput. Math. Appl. 64, 102–114 (2012)CrossRefzbMATHGoogle Scholar
  7. 7.
    Rahim, A.H.M.A.; Nowicki, E.P.: Supercapacitor energy storage system for fault ride-through of a DFIG wind generation system. Energy Convers. Manag. 59, 96–102 (2012)CrossRefGoogle Scholar
  8. 8.
    Kerrouche, K.; Mezouar, A.; Belgacem, K.: Decoupled control of doubly fed induction generator by vector control for wind energy conversion system. Energy Procedia 42, 239–248 (2013)CrossRefGoogle Scholar
  9. 9.
    Kerrouche, K.D.E.; Mezouar, A.; Boumediene, L.; Belgacem, Kh: Modeling and optimum power control based DFIG wind energy conversion system. IREE 9, 174 (2014)CrossRefGoogle Scholar
  10. 10.
    Kenan Dösoglu, M.; Öztürk, A.: Investigation of different load changes in wind farm by using FACTS devices. Adv. Eng. Softw. 45, 292–300 (2012)CrossRefGoogle Scholar
  11. 11.
    Amaris, H.; Alonso, M.: Coordinated reactive power management in power networks with wind turbines and FACTS devices. Energy Convers. Manag. 52, 2575–2586 (2011)CrossRefGoogle Scholar
  12. 12.
    Wang, L.; Truong, D.-N.: Stability enhancement of DFIG-based offshore wind farm fed to a multi-machine system using a STATCOM. IEEE Trans. Power Syst. 28, 2882–2889 (2013)CrossRefGoogle Scholar
  13. 13.
    Senthil Kumar, N.; Gokula Krishnan, J.: Impact of FACTS controllers on the stability of power systems connected with doubly fed induction generators. Electr. Power Energy Syst. 33, 1172–1184 (2011)CrossRefGoogle Scholar
  14. 14.
    Ananth, D.V.N.; Kumar, G.N.: Fault ride-through enhancement using an enhanced field-oriented control technique for converters of grid connected DFIG and STATCOM for different types of faults. ISA Trans. 62, 2–18 (2015)CrossRefGoogle Scholar
  15. 15.
    Li, S.; Xu, L.; Haskew, A.: Control of VSC-based STATCOM using conventional and direct-current vector control strategies. Electr. Power Energy Syst. 45, 175–186 (2013)CrossRefGoogle Scholar
  16. 16.
    Chebabhi, A.; Fellah, M.K.; Kessal, A.; Benkhoris, M.F.: Four leg D-STATCOM based on synchronous reference frame theory with enhanced phase locked loop for compensating a four wire distribution network under unbalanced PCC voltages and loads. J. Power Technol. 96, 15 (2016)Google Scholar
  17. 17.
    Xi, Z.; Parkhideh, B.; Bhattacharya, S.: Improving distribution system performance with integrated STATCOM and supercapacitor energy storage system. In: Power Electronics Specialists Conference, 2008 PESC 2008 IEEE. IEEE, pp. 1390–1395 (2008)Google Scholar
  18. 18.
    Döşoğlu, M.; Arsoy, A.B.; Güvenç, U.: Application of STATCOM-supercapacitor for low-voltage ride-through capability in DFIG-based wind farm. Neural Comput. Appl. 28(9), 2665–2674 (2017)CrossRefGoogle Scholar
  19. 19.
    Zhang, X.-P.; Rehtanz, C.; Pal, B.: Flexible AC Transmission Systems: Modelling and Control. Springer, Berlin (2012)CrossRefGoogle Scholar
  20. 20.
    Kerrouche, K.D.E.; Mezouar, A.; Boumediene, L.; Van Den Bossche, A.: A comprehensive review of LVRT capability and sliding mode control of grid-connected wind-turbine-driven doubly fed induction generator. Automatika J. Control Meas. Electron. Comput. Commun. 57(4), 922–935 (2016)Google Scholar
  21. 21.
    Slotine, J.-J.E.; Li, W.: Applied Nonlinear Control, p. 199. Prentice-Hall, Englewood Cliffs (1991)zbMATHGoogle Scholar
  22. 22.
    Melício, R.; Mendes, V.M.F.; Catalão, J.P.S.: Fractional-order control and simulation of wind energy systems with PMSG/full-power converter topology. Energy Convers. Manag. 51(6), 1250–1258 (2010)CrossRefGoogle Scholar
  23. 23.
    Wessels, C.; Hoffmann, N.; Molinas, M.; Fuchs, F.W.: StatCom control at wind farms with fixed-speed induction generators under asymmetrical grid faults. IEEE Trans. Ind. Electron. 60(7), 2864–2873 (2013)CrossRefGoogle Scholar
  24. 24.
    Draou, A.; Benghanen, M.; Tahri, A.: Multilevel converters and VAR compensation. In: Power Electronics Handbook, pp. 615–622 (2001)Google Scholar
  25. 25.
    Manla, E.; Mandic, G.; Nasiri, A.: Testing and modeling of lithium-ion ultracapacitors. In: IEEE Energy Conversion Congress and Exposition (ECCE), pp. 2957–2962 (2011)Google Scholar
  26. 26.
    Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Feliu-Batlle, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  27. 27.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  28. 28.
    Hwang, C.; Leu, J.-F.; Tsay, S.-Y.: A note on time-domain simulation of feedback fractional-order systems. IEEE Trans. Autom. Control 47, 625–631 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Oustaloup, A.; Mathieu, B.; Lanusse, P.: The CRONE control of resonant plants: application to a flexible transmission. Eur. J. Control 1, 113–21 (1995)CrossRefGoogle Scholar
  30. 30.
    Tepljakov, A.; Petlenkov, E.; Belikov, J.; Halas, M.: Design and implementation of fractional-order PID controllers for a fluid tank system. In: American Control Conference (ACC). IEEE, pp. 1777–1782 (2013)Google Scholar
  31. 31.
    Baranowski, J.; Bauer, W.; Zagórowska, M.; Dziwiński, T., Piątek, P.: Time-domain oustaloup approximation. In: 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 116–120. IEEE (2015)Google Scholar
  32. 32.
    Afghoul, H.; Krim, F.; Chikouche, D.; Beddar, A.: Design and real time implementation of fuzzy switched controller for single phase active power filter. ISA Trans. 58, 614–21 (2015)CrossRefGoogle Scholar
  33. 33.
    Rubio, J.J.; Soriano, E.; Juarez, C.F.; Pacheco, J.: Sliding mode regulator for the perturbations attenuation in two tank plants. IEEE Access 5(1), 20504–20511 (2017)CrossRefGoogle Scholar
  34. 34.
    Aguilar-Ibañez, C.; Sira-Ramirez, H.; Acosta, Á.J.: Stability of active disturbance rejection control for uncertain systems: a Lyapunov perspective. Int. J. Robust Nonlinear Control (2017).  https://doi.org/10.1002/rnc.3812 MathSciNetzbMATHGoogle Scholar
  35. 35.
    Rubio, J.J.: Robust feedback linearization for nonlinear processes control. ISA Trans. 74, 155–164 (2018)CrossRefGoogle Scholar
  36. 36.
    Xia, M.; Mao, Y.: Integral sliding mode control strategy of D-STATCOM for unbalanced load compensation under various disturbances. In: Mathematical Problems in Engineering (2013)Google Scholar
  37. 37.
    Lee, S.-B.; Lee, K.-B.; Lee, D.-C.; Kim, J.-M.: An improved control method for a DFIG in a wind turbine under an unbalanced grid voltage condition. J. Electr. Eng. Technol. 5, 614 (2010)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.School of Automation Science and Electrical EngineeringBeihang UniversityBeijingChina
  2. 2.Electro-technical Engineering Lab, Faculty of TechnologyTahar Moulay UniversitySidonAlgeria
  3. 3.Electrical Energy LAB EELABGhentBelgium

Personalised recommendations