Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1081–1095 | Cite as

Analysis of Absorption Cooling and MD Desalination Cogeneration System

  • Ahmed Yassen
  • Mohamed A. AntarEmail author
  • Atia E. Khalifa
  • Maged El-Shaarawi
Research Article - Mechanical Engineering
  • 27 Downloads

Abstract

An integrated system of solar absorption cooling and membrane distillation (MD) water desalination sub-systems is investigated to supply chilled water for space air-conditioning and desalination to provide freshwater for a typical family house. The system is based on single-effect LiBr–\(\hbox {H}_{\mathrm {2}}\hbox {O}\) absorption refrigeration cycle where rejected heat is used to heat feed water in the MD system. Two different arrangements of the system are discussed, configurations A and B. Configuration (A) utilizes cooling seawater for the cold side of MD unit, while configuration (B) shares the chilled water produced from the absorption system with partial cooling load requirements. Results show that maximum cooling effect is produced by configuration (A) followed by configuration (B) with 25, 50 and 75% bypass percentages that produce 26, 19.5, 9.8 and 2.5 kW cooling effect, respectively. Meanwhile, configuration (B) with 75% bypass percentage has a better performance in terms of water productivity such that it produces up to 133 \(\hbox {kg/m}^{\mathrm {2}}\)-hr of desalinated water compared to 125, 118 and 110 for the same configuration (B) at different bypass ratios of 50, 25% and configuration (A), respectively.

Keywords

Integrated air-conditioning and desalination systems Solar energy Absorption cycle Water–lithium bromide Direct contact membrane distillation Chilled water control Performance analysis 

List of symbols

A

Area (\(\hbox {m}^{{2}}\))

\(C_{{\mathrm{p}}}\)

Specific heat (J/kg-K)

\(D_{\mathrm {e}}\)

Diffusion coefficient (\(\hbox {m}^{\mathrm {2}}\hbox {/s}\))

\(D_{\mathrm {h}}\)

Hydraulic diameter (m)

\(d_{\mathrm {pore}}\)

Pore diameter (m)

\(\Delta H\)

Enthalpy or latent heat of vaporization of water (kJ/kg)

i

Enthalpy (kJ/kg)

h

Convection heat transfer coefficient (\(\hbox {W/m}^{\mathrm {2}}\hbox {-K}\))

\(J_{\mathrm {w}}\)

Mass flux (\(\hbox {kg/m}^{\mathrm {2}}\hbox {-s}\))

k

Thermal conductivity (W/m-K)

L

Length (m)

\(\dot{m}\)

Mass flow rate (kg/s)

M

Molecular weight (g/mol)

Nu

Nusselt number

\(\Delta P\)

Pressure difference (Pa)

P

Pressure (Pa)

\(P_{\mathrm {high}}\)

High-side pressure (kPa)

\(P_{\mathrm {low}}\)

Low-side pressure (kPa)

Pr

Prandtl number

\(\dot{Q}\)

Heat transfer rate (W)

R

Universal gas constant, 8314 J/kmol.K

Re

Reynolds number

T

Temperature (\(^{\circ }\hbox {C}\))

W

Work (kW)

X

Concentration

x

Mole fraction

Abbreviations

CHX

Coolant heat exchanger

COP

Coefficient of performance

DCMD

Direct contact membrane distillation

FHX

Feed heat exchanger

LMTD

Log-mean temperature difference (\(^{\circ }\hbox {C}\))

MED

Multi-effect distillation

SAC

Solar absorption cooling

SHX

Solution heat exchanger

Greek Symbols

\(\alpha \)

Contribution of Knudsen diffusion to mass transfer

\(\gamma \)

Salt activity coefficient

\(\delta \)

Membrane Thickness (m)

\(\varepsilon \)

Porosity (%)

\(\eta \)

Efficiency

\(\mu \)

Viscosity (Pa-s)

\(\tau \)

Membrane tortuosity

\(\upsilon \)

Viscous diffusion

Subscripts

a

Absorber

bf

Bulk feed

bp

Bulk permeate

c

Condenser

e

Evaporator

f

Feed side

g

Generator

k

Knudsen

m

Mean or average property

mem

Membrane

mf

Membrane feed surface

mp

Membrane permeate surface

p

Permeate side

r

Refrigerant

ss

Strong solution

v

Vapors/vaporization

w

Water

w, a

Water in air

w, v, p

Water vapors inside the pores

ws

Weak solution

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge the support and fund received from the Deanship of Research, King Fahd University of Petroleum and Minerals (KFUPM) under Research Grant # IN171014.

References

  1. 1.
    Siddiqui, M.U.: Development of a continuously operated solar powered refrigeration system, Master Thesis, King Fahad University of Petroleum and Minerals (2011)Google Scholar
  2. 2.
    Slesarenko, V.V.: Heat pumps as a source of heat energy for desalination of seawater. Desalination 139(May), 405–410 (2001)CrossRefGoogle Scholar
  3. 3.
    Franchini, G.; Perdichizzi, A.; Picinardi, A.: HD desalination by heat rejected from solar cooling systems. In: 2010 IEEE International Energy Conference and Exhibition (EnergyCon), vol. 2010, pp. 63–68 (2010)Google Scholar
  4. 4.
    Alarcón-padilla, D.; García-rodríguez, L.: Application of absorption heat pumps to multi-effect distillation?: a case study of solar desalination. Desalination 212, 294–302 (2007)CrossRefGoogle Scholar
  5. 5.
    Mandani, F.; Ettouney, H.; El-Dessouky, H.: LiBr–H2O absorption heat pump for single-effect evaporation desalination process. Desalination 128, 161–176 (2000)CrossRefGoogle Scholar
  6. 6.
    Yuan, G.; Zhang, L.; Zhang, H.: Experimental research of an integrative unit for air-conditioning and desalination. Desalination 182(1–3), 511–516 (2005)CrossRefGoogle Scholar
  7. 7.
    Gude, V.G.; Nirmalakhandan, N.: Combined desalination and solar-assisted air-conditioning system. Energy Convers. Manag. 49(11), 3326–3330 (2008)CrossRefGoogle Scholar
  8. 8.
    Wang, Y.; Lior, N.: Proposal and analysis of a high-efficiency combined desalination and refrigeration system based on the LiBr-H2O absorption cycle—part 1: system configuration and mathematical model. Energy Convers. Manag. 52(1), 220–227 (2011)CrossRefGoogle Scholar
  9. 9.
    Wang, Y.; Lior, N.: Thermoeconomic analysis of a low-temperature multi-effect thermal desalination system coupled with an absorption heat pump. Energy 36(6), 3878–3887 (2011)CrossRefGoogle Scholar
  10. 10.
    Ghali, K.; Ghaddar, N.; Alsaidi, A.: Experimental and theoretical study of an optimized integrated solar desalination and air conditioning unit. Int. J. Green Energy 8(1), 81–99 (2011)CrossRefGoogle Scholar
  11. 11.
    Abdel-Rehim, Z.S.; Lashine, A.: A study of solar desalination still combined with air-conditioning system. ISRN Renew. Energy 2012, 1–7 (2012)CrossRefGoogle Scholar
  12. 12.
    Abdulrahim, H.K.; Darwish, M.A.: Thermal desalination and air conditioning using absorption cycle. Desalin. Water Treat. 55(12), 3310–3329 (2015)CrossRefGoogle Scholar
  13. 13.
    Chiranjeevi, C.; Srinivas, T.: Combined two stage desalination and cooling plant. Desalination 345, 56–63 (2014)CrossRefGoogle Scholar
  14. 14.
    Nada, S.A.; Elattar, H.F.; Fouda, A.: Experimental study for hybrid humidification-dehumidification water desalination and air conditioning system. Desalination 363, 112–125 (2015)CrossRefGoogle Scholar
  15. 15.
    Nada, S.A.; Elattar, H.F.; Fouda, A.: Performance analysis of proposed hybrid air conditioning and humidification–dehumidification systems for energy saving and water production in hot and dry climatic regions. Energy Convers. Manag. 96, 208–227 (2015)CrossRefGoogle Scholar
  16. 16.
    Fathalah, K.; Aly, S.E.: Theoretical study of a solar powered absorption/MED combined system. Energy Convers. Manag. 31(6), 529–544 (1991)CrossRefGoogle Scholar
  17. 17.
    Khayet, M.: Membranes and theoretical modeling of membrane distillation: a review. Adv. Colloid Interface Sci. 164(1–2), 56–88 (2011)CrossRefGoogle Scholar
  18. 18.
    Essalhi, M.; Khayet, M.: Self-sustained webs of polyvinylidene fluoride electrospun nanofibers at different electrospinning times: 1. Desalination by direct contact membrane distillation. J. Membr. Sci. 433, 167–179 (2013)CrossRefGoogle Scholar
  19. 19.
    Song, Z.W.; Jiang, L.Y.: Optimization of morphology and perf ormance of PVDF hollow fiber for direct contact membrane distillation using experimental design. Chem. Eng. Sci. 101, 130–143 (2013)CrossRefGoogle Scholar
  20. 20.
    Andrjesdóttir, Ó.; Ong, C.L.; Nabavi, M.; Paredes, S.; Khalil, A.S.G.; Michel, B.; Poulikakos, D.: An experimentally optimized model for heat and mass transfer in direct contact membrane distillation. Int. J. Heat Mass Transf. 66, 855–867 (2013)CrossRefGoogle Scholar
  21. 21.
    Alkhudhiri, A.; Darwish, N.; Hilal, N.: Membrane distillation: a comprehensive review. Desalination 287, 2–18 (2012)CrossRefGoogle Scholar
  22. 22.
    Phattaranawik, J.; Jiraratananon, R.; Fane, A.G.: Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation. J. Membr. Sci. 215(1–2), 75–85 (2003)CrossRefGoogle Scholar
  23. 23.
    Khalifa, A.; Ahmad, H.; Antar, M.; Laoui, T.; Khayet, M.: Experimental and theoretical investigations on water desalination using direct contact membrane distillation. Desalination 404, 22–34 (2017)CrossRefGoogle Scholar
  24. 24.
    Khayet, M.; Matsuura, T.: Membrane Distillation: Principles and Applications. Elsevier, New York City (2011)CrossRefGoogle Scholar
  25. 25.
    Liu, C.; Chen, Y.; Sheu, W.; Wang, C.: Effect of flow deflector on the flux improvement in direct contact membrane distillation. Desalination 253, 16–21 (2010)CrossRefGoogle Scholar
  26. 26.
    Yun, Y.; Ma, R.; Zhang, W.; Fane, A.G.; Li, J.: Direct contact membrane distillation mechanism for high concentration NaCl solutions. Desalination 188(February 2005), 251–262 (2006)CrossRefGoogle Scholar
  27. 27.
    Phattaranawik, J.; Jiraratananon, R.; Fane, A.: Heat transport and membrane distillation coefficients in direct contact membrane distillation. J. Membr. Sci. 212(1), 177–193 (2003)CrossRefGoogle Scholar
  28. 28.
    Francis, L.; Ghaffour, N.; Alsaadi, A.A.; Amy, G.L.: Material gap membrane distillation: a new design for water vapor flux enhancement. J. Membr. Sci. 448, 240–247 (2013)CrossRefGoogle Scholar
  29. 29.
    Srisurichan, S.; Jiraratananon, R.; Fane, A.G.: Mass transfer mechanisms and transport resistances in direct contact membrane distillation process. J. Membr. Sci. 277(1–2), 186–194 (2006)CrossRefGoogle Scholar
  30. 30.
    Martínez-Díez, L.; Vázquez-González, M.: Temperature and concentration polarization in membrane distillation of aqueous salt solutions. J. Membr. Sci. 156(2), 265–273 (1999)CrossRefGoogle Scholar
  31. 31.
    Lawson, K.W.; Lloyd, D.R.: Membrane distillation. J. Membr. Sci. 124(1), 1–25 (1997)CrossRefGoogle Scholar
  32. 32.
    Balghouthi, M.; Chahbani, M.H.; Guizani, A.: Feasibility of solar absorption air conditioning in Tunisia. Build. Environ. 43(9), 1459–1470 (2008)CrossRefGoogle Scholar
  33. 33.
    Al-Ugla, A.A.; El-Shaarawi, M.A.I.; Said, S.A.M.: Alternative designs for a 24-hours operating solar-powered LiBr–water absorption air-conditioning technology. Int. J. Refrig. 53, 90–100 (2015)CrossRefGoogle Scholar
  34. 34.
    Said, S.A.M.; El-Shaarawi, M.A.I.; Siddiqui, M.U.: Alternative designs for a 24-h operating solar-powered absorption refrigeration technology. Int. J. Refrig. 35, 1967–1977 (2012)CrossRefGoogle Scholar
  35. 35.
    Klein, S.A.; Alvarado, F.L.: EES: Engineering equation solver for the Microsoft Windows operating system. F-Chart software (1992)Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Ahmed Yassen
    • 1
  • Mohamed A. Antar
    • 1
    Email author
  • Atia E. Khalifa
    • 1
  • Maged El-Shaarawi
    • 1
  1. 1.Mechanical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations