Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 1043–1055 | Cite as

Heat Transfer Performance of a Synthetic Jet at Various Driving Frequencies and Diaphragm Amplitude

  • S. M. Firdaus
  • M. Z. Abdullah
  • M. K. Abdullah
  • Z. M. Fairuz
Research Article - Mechanical Engineering


The miniaturization of electronic devices with high-speed processing components is aggravating the heat generation of devices/systems. Space constraint has become a major issue in electronic cooling as these system can no longer accommodate a fan and liquid piping. Synthetic jets are an alternative solution because of their low operating cost and low space requirement. In this work, we fabricated a synthetic jet and analyzed its amplitude motion at different frequencies to measure the enhancement of heat transfer. ANSYS FLUENT\(^{{\textregistered }}\) 15 was used to identify the vortex formation related to the fluid velocity profile during the ejection and suction phases to substantiate heat transfer performance. The amplitude was determined by conducting laser Doppler experiments for each frequency applied. The experimental results were validated against numerical prediction using an appropriate turbulent model and a structured meshing grade. The conformity between the numerical and experimental results was found to be < 5%. The maximum velocity was observed at 500 Hz driving frequency, which agreed with the result that the resonance frequency at 500 Hz had the highest amplitude and sweep volume. A large vortex formation was also recorded during the ejection phase at 500 Hz, resulting in the maximum temperature drop and a higher heat transfer coefficient (h) than the nonresonance frequency. The synthetic jet operating at the resonance frequency produced the maximum amplitude, fluid velocity, and large vortex formation proportional to h.


Synthetic jet Driving frequency Sinusoidal Heat transfer Amplitude 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holman, R.; Utturkar, Y.; Mittal, R.; Smith, B.L.; Cattafesta, L.: Formation criterion for synthetic jets. AIAA J. 43, 2110–2116 (2005)CrossRefGoogle Scholar
  2. 2.
    Silva-Llanca, L.; Ortega, A.: Vortex dynamics and mechanisms of heat transfer enhancement in synthetic jet impingement. Int. J. Therm. Sci. 112, 153–164 (2017)CrossRefGoogle Scholar
  3. 3.
    Deng, X.; Luo, Z.; Xia, Z.; Gong, W.; Wang, L.: Active-passive combined and closed-loop control for the thermal management of high-power LED based on a dual synthetic jet actuator. Energy Convers. Manag. 132, 207–212 (2017)CrossRefGoogle Scholar
  4. 4.
    Firdaus, S.M.; Omar, H.; Azid, I.A.: High sensitive piezoresistive cantilever MEMS based sensor by introducing stress concentration region (SCR). In: Finite Element Analysis-New Trends and Developments, pp. 1–24. InTech (2012)Google Scholar
  5. 5.
    Randy, A.; Andika, A.; Rhakasywi, D.: The characteristics of cooling on heat sink using a cross flow synthetic jet actuated by variation of wave function. WSEAS Trans. Heat Mass Transf. 8(3), 83–90 (2013)Google Scholar
  6. 6.
    Pavlova, A.; Amitay, M.: Electronic cooling using synthetic jet impingement. J. Heat Transf. 128(9), 897 (2006)CrossRefGoogle Scholar
  7. 7.
    Smith, B.L.; Glezer, A.: The formation and evolution of synthetic jets. Phys. Fluids 10(9), 2281–2297 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Krishnan, G.; Mohseni, K.: An experimental study of a radial wall jet formed by the normal impingement of a round synthetic jet. Eur. J. Mech. B/Fluids 29(4), 269–277 (2010)CrossRefzbMATHGoogle Scholar
  9. 9.
    Chaudhari, M.; Puranik, B.; Agrawal, A.: Effect of orifice shape in synthetic jet based impingement cooling. Exp. Therm. Fluid Sci. 34(2), 246–256 (2010)CrossRefGoogle Scholar
  10. 10.
    Persoons, T.: General reduced-order model to design and operate synthetic jet actuators. AIAA J. 50(4), 916–927 (2012)CrossRefGoogle Scholar
  11. 11.
    Qayoum, A.; Gupta, V.; Panigrahi, P.K.; Muralidhar, K.: Perturbation of a laminar boundary layer by a synthetic jet for heat transfer enhancement. Int. J. Heat Mass Transf. 53(23–24), 5035–5057 (2010)CrossRefGoogle Scholar
  12. 12.
    Lievano, C.F.P.: Experimental and Computational Study of a Zero Net Mass Flux Synthetic Jet. Washington University, St. Louis (2008)Google Scholar
  13. 13.
    Ben Chiekh, M.; Ferchichi, M.; Béra, J.C.: Modified flapping jet for increased jet spreading using synthetic jets. Int. J. Heat Fluid Flow 32(5), 865–875 (2011)CrossRefGoogle Scholar
  14. 14.
    Arik, M.: Local heat transfer coefficients of a high-frequency synthetic jet during impingement cooling over flat surfaces. Heat Transf. Eng. 29(9), 763–773 (2008)CrossRefGoogle Scholar
  15. 15.
    Bhapkar, U.S.; Srivastava, A.; Agrawal, A.: Acoustic and heat transfer characteristics of an impinging elliptical synthetic jet generated by acoustic actuator. Int. J. Heat Mass Transf. 79, 12–23 (2014)CrossRefGoogle Scholar
  16. 16.
    Chaudhari, M.; Puranik, B.; Agrawal, A.: Multiple orifice synthetic jet for improvement in impingement heat transfer. Int. J. Heat Mass Transf. 54(9–10), 2056–2065 (2011)CrossRefGoogle Scholar
  17. 17.
    Liu, Y.-H.; Tsai, S.-Y.; Wang, C.-C.: Effect of driven frequency on flow and heat transfer of an impinging synthetic air jet. Appl. Therm. Eng. 75, 289–297 (2015)CrossRefGoogle Scholar
  18. 18.
    Lin, C.; Bai, C.; Hsiao, F.: An investigation on fundamental characteristics of excited synthetic jet actuator under cavity and diaphragm resonances. Procedia Eng. 79, 35–44 (2014)Google Scholar
  19. 19.
    Cater, J.E.; Soria, J.: The evolution of round zero-net-mass-flux jets. J. Fluid Mech. 472, 167–200 (2002)CrossRefzbMATHGoogle Scholar
  20. 20.
    Kimber, M.; Garimella, S.V.; Raman, A.: Local heat transfer coefficients induced by piezoelectrically actuated vibrating cantilevers. J. Heat Transf. 129(9), 1168 (2007)CrossRefGoogle Scholar
  21. 21.
    Abdullah, M.K.; Ismail, N.C.; Abdul Mujeebu, M.; Abdullah, M.Z.; Ahmad, K.A.; Husaini, M.; Hamid, M.N.A.: Optimum tip gap and orientation of multi-piezofan for heat transfer enhancement of finned heat sink in microelectronic cooling. Int. J. Heat Mass Transf. 55(21–22), 5514–5525 (2012)CrossRefGoogle Scholar
  22. 22.
    Chandratilleke, T.T.; Jagannatha, D.; Narayanaswamy, R.: Heat transfer enhancement in microchannels with cross-flow synthetic jets. Int. J. Therm. Sci. 49, 504–513 (2010)CrossRefGoogle Scholar
  23. 23.
    Argyropoulos, C.D.; Markatos, N.C.: Recent advances on the numerical modelling of turbulent flows. Appl. Math. Model. 39, 693–732 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Silva-Llanca, L.; Ortega, A.: Vortex dynamics and mechanisms of heat transfer enhancement in synthetic jet impingement. Int. J. Therm. Sci. 112, 153–164 (2017)CrossRefGoogle Scholar
  25. 25.
    Bhapkar, U.S.; Mohanan, S.; Agrawal, A.; Srivastava, A.: Interferometry based whole-field heat transfer measurements of an impinging turbulent synthetic jet. Int. Commun. Heat Mass Transf. 58, 118–124 (2014)CrossRefGoogle Scholar
  26. 26.
    Chaudhari, M.; Verma, G.; Puranik, B.; Agrawal, A.: Frequency response of a synthetic jet cavity. Exp. Therm. Fluid Sci. 33(3), 439–448 (2009)CrossRefGoogle Scholar
  27. 27.
    McGuinn, A.; Farrelly, R.; Persoons, T.; Murray, D.B.: Flow regime characterisation of an impinging axisymmetric synthetic jet. Exp. Therm. Fluid Sci. 47, 241–251 (2013)CrossRefGoogle Scholar
  28. 28.
    Ikhlaq, M.; Ghaffari, O.; Arik, M.: Effect of actuator deflection on heat transfer for low and high frequency synthetic jets. In: IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp. 882–888 (2014)Google Scholar
  29. 29.
    Mahalingam, R.; Heffington, S.; Jones, L.; Schwickert, M.: Newisys server processor cooling augmentation using synthetic jet ejectors. In: IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp. 705–709 (2006)Google Scholar
  30. 30.
    Mahalingam, R.: Modeling of synthetic jet ejectors for electronics cooling. In: Annual IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 196–199 (2007)Google Scholar
  31. 31.
    van Buren, T.; Whalen, E.; Amitay, M.: Interaction between a vortex generator and a synthetic jet in a crossflow. Phys. Fluids 27(10), 107101 (2015)CrossRefGoogle Scholar
  32. 32.
    Lee, A.; Yeoh, G.H.; Timchenko, V.; Reizes, J.A.: Flow structure generated by two synthetic jets in a channel: effect of phase and frequency. Sens. Actuat. A Phys. 184, 98–111 (2012)CrossRefGoogle Scholar
  33. 33.
    Jeng, T.-M.; Hsu, W.-T.: Experimental study of mixed convection heat transfer on the heated plate with the circular-nozzle synthetic jet. Int. J. Heat Mass Transf. 97, 559–568 (2016)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringUniversiti Sains MalaysiaNibong TebalMalaysia
  2. 2.Faculty of Mechanical EngineeringUniversiti Teknologi MARAPermatang PauhMalaysia
  3. 3.School of Materials and Mineral Resources EngineeringUniversiti Sains MalaysiaNibong TebalMalaysia

Personalised recommendations