Advertisement

Arabian Journal for Science and Engineering

, Volume 43, Issue 11, pp 6191–6202 | Cite as

Modeling, Optimization and Kinetic Study for Photocatalytic Treatment of Ornidazole Using Slurry and Fixed-Bed Approach

  • Steffi Talwar
  • Vikas Kumar Sangal
  • Anoop Verma
  • Parminder Kaur
  • Alok Garg
Research Article - Chemical Engineering
  • 36 Downloads

Abstract

Ornidazole is a well-known antibiotic which has been widely used for both human and veterinary treatments. The present study investigated the degradation of ornidazole using \(\hbox {TiO}_{2}\) as a photocatalyst with UV light irradiation. Artificial neural network (ANN) was applied for the modeling of the photocatalytic degradation of ornidazole. In slurry mode, the input parameters were pH, ornidazole concentration, \(\hbox {TiO}_{2}\) dose, treatment time and % degradation as output. Parametric optimization was performed by Box–Behnken design (BBD). At optimum conditions the % degradation was found to be 84.02, 82.63 and 77.7% as predicted by BBD, simulated by ANN and by experimental run respectively. The results showed that the predictions agreed with the experimental results. The degradation of ornidazole follows the second-order reaction kinetics. For fixed-bed studies, \(\hbox {TiO}_{2}\) immobilized spherical cement beads were used to carry out the degradation of ornidazole at laboratory scale as well as at pilot scale with volume handling of 5 L. The catalyst immobilized beads were successfully recycled for at-least 40 runs without any significant reduction in the degradation efficiency of ornidazole. The activity as well as stability of immobilized catalyst over the surface of beads was confirmed through SEM/EDS, XRD and DRS analysis. Bioassay test was conducted for the safe disposal of treated wastewater and was found to be non-toxic.

Keywords

Photocatalytic process Titanium dioxide Ornidazole ANN BBD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dinh, Q.T.; Alliot, F.; Moreau-Guigon, E.; Eurin, J.J.; Chevreuil, M.; Labadie, P.: Measurement of trace levels of antibiotics in river water using on-line enrichment and triple-quadrupole LC–MS/MS. Talanta 85, 1238–1245 (2011).  https://doi.org/10.1016/j.talanta.2011.05.013 CrossRefGoogle Scholar
  2. 2.
    Yang, L.; Yu, L.E.; Ray, M.B.: Degradation of paracetamol in aqueous solutions by \(\text{ TiO }_{2}\) photocatalysis. Water Res. 42, 3480–3488 (2008).  https://doi.org/10.1016/j.watres.2008.04.023 CrossRefGoogle Scholar
  3. 3.
    Braz, F.; Silva, M.; Silva, F.: Photocatalytic degradation of ibuprofen using \(\text{ TiO }_{2}\) and ecotoxicological assessment of degradation intermediates against Daphnia similis. J. Environ. Prot. (Irvine, Calif) 5, 620–626 (2014)CrossRefGoogle Scholar
  4. 4.
    Kümmerer, K.: Chemosphere antibiotics in the aquatic environment—a review—Part II. Chemosphere 75, 435–441 (2009).  https://doi.org/10.1016/j.chemosphere.2008.12.006 CrossRefGoogle Scholar
  5. 5.
    Klamerth, N.; Rizzo, L.; Malato, S.; Maldonado, M.I.; Aguera, a; Fernandez-Alba, A.R.: Degradation of fifteen emerging contaminants at \(\upmu \text{ g }~\text{ L }^{-1}\) initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Res. 44, 545–554 (2010).  https://doi.org/10.1016/j.watres.2009.09.059 CrossRefGoogle Scholar
  6. 6.
    Sang, Z.; Jiang, Y.; Tsoi, Y.K.; Leung, K.S.Y.: Evaluating the environmental impact of artificial sweeteners: a study of their distributions, photodegradation and toxicities. Water Res. 52, 260–264 (2014).  https://doi.org/10.1016/j.watres.2013.11.002 CrossRefGoogle Scholar
  7. 7.
    Joss, A.; Keller, E.; Alder, A.C.; Göbel, A.; McArdell, C.S.; Ternes, T.; Siegrist, H.: Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res. 39, 3139–3152 (2005).  https://doi.org/10.1016/j.watres.2005.05.031 CrossRefGoogle Scholar
  8. 8.
    Teixeira, S.; Gurke, R.; Eckert, H.; Kuhn, K.; Fauler, J.; Cuniberti, G.: Photocatalytic degradation of pharmaceuticals present in conventional treated wastewater by nanoparticle suspensions. J. Environ. Chem. Eng. 4, 287–292 (2016).  https://doi.org/10.1016/j.jece.2015.10.045 CrossRefGoogle Scholar
  9. 9.
    Ziemiańska, J.; Adamek, E.; Sobczak, A.; Lipska, I.; Makowski, A.; Baran, W.: The study of photocatalytic degradation of sulfonamides applied to municipal wastewater. Physicochem. Probl. Miner. Process. 45, 127–140 (2010)Google Scholar
  10. 10.
    Giri, R.R.; Ozaki, H.; Ota, S.; Takanami, R.; Taniguchi, S.: Degradation of common pharmaceuticals and personal care products in mixed solutions by advanced oxidation techniques. Int. J. Environ. Sci. Technol. 7, 251–260 (2010).  https://doi.org/10.1007/BF03326135 CrossRefGoogle Scholar
  11. 11.
    Kim, I.; Tanaka, H.: Photodegradation characteristics of PPCPs in water with UV treatment. Environ. Int. 35, 793–802 (2009).  https://doi.org/10.1016/j.envint.2009.01.003 CrossRefGoogle Scholar
  12. 12.
    Fujishima, A.; Rao, T.N.; Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 1, 1–21 (2000).  https://doi.org/10.1016/S1389-5567(00)00002-2 CrossRefGoogle Scholar
  13. 13.
    Mills, A.; Le Hunte, S.: An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A Chem. 108, 1–35 (1997).  https://doi.org/10.1016/S1010-6030(97)00118-4 CrossRefGoogle Scholar
  14. 14.
    Fox, M.A.; Dulay, M.T.: Heterogeneous photocatalysis. Chem. Rev. 93, 341–357 (1993).  https://doi.org/10.1021/cr00017a016 CrossRefGoogle Scholar
  15. 15.
    Palmisano, G.; García-López, E.; Marcì, G.; Loddo, V.; Yurdakal, S.; Augugliaro, V.; Palmisano, L.: Advances in selective conversions by heterogeneous photocatalysis. Chem. Commun. (Cambr) 46, 7074–89 (2010).  https://doi.org/10.1039/c0cc02087g CrossRefGoogle Scholar
  16. 16.
    Fujishima, A.; Zhang, X.; Tryk, D.A.: TiO\(_{2}\) Photocatalysis and Related Surface Phenomena. Elsevier, Amsterdam (2008)Google Scholar
  17. 17.
    ArunaKumari, M.L.; Devi, L.G.: New insights into the origin of the visible light photocatalytic activity of Fe (III) porphyrin surface anchored \(\text{ TiO }_{2}\). Environ. Sci. 1, 177–187 (2015).  https://doi.org/10.1039/C4EW00024B CrossRefGoogle Scholar
  18. 18.
    Zheng, Q.; Shen, H.; Shuai, D.: Emerging investigators series: advances and environmental science challenges of graphitic carbon nitride as a visible. Environ. Sci. Water Res. Technol. 3, 982 (2017).  https://doi.org/10.1039/C7EW00159B CrossRefGoogle Scholar
  19. 19.
    Pistkova, V.; Tasbihi, M.; Vavrova, M.; Stangar, U.L.: Photocatalytic degradation of \(\beta \)-blockers by using immobilized titania/silica on glass slides. J. Photochem. Photobiol. A Chem. 305, 19–28 (2015).  https://doi.org/10.1016/j.jphotochem.2015.02.014 CrossRefGoogle Scholar
  20. 20.
    Prieto-Rodriguez, L.; Miralles-Cuevas, S.; Oller, I.; Aguera, a; Puma, G.L.; Malato, S.: Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low \(\text{ TiO }_{2}\) concentrations. J. Hazard. Mater. 211–212, 131–137 (2012).  https://doi.org/10.1016/j.jhazmat.2011.09.008 CrossRefGoogle Scholar
  21. 21.
    Sarkar, S.; Chakraborty, S.; Bhattacharjee, C.: Photocatalytic degradation of pharmaceutical wastes by alginate supported \(\text{ TiO }_{2}\) nanoparticles in packed bed photo reactor (PBPR). Ecotoxicol. Environ. Saf. 121, 263–270 (2015).  https://doi.org/10.1016/j.ecoenv.2015.02.035 CrossRefGoogle Scholar
  22. 22.
    Zhao, J.; Yao, B.; He, Q.; Zhang, T.: Preparation and properties of visible light responsive \(\text{ Y }^{3+}\) doped \(\text{ Bi }_{5}\text{ Nb }_{3}\text{ O }_{15}\) photocatalysts for Ornidazole decomposition. J. Hazard. Mater. 229–230, 151–158 (2012).  https://doi.org/10.1016/j.jhazmat.2012.05.088 CrossRefGoogle Scholar
  23. 23.
    Fukahori, S.; Fujiwara, T.: Photocatalytic decomposition behavior and reaction pathway of sulfamethazine antibiotic using \(\text{ TiO }_{2}\). J. Environ. Manag. 157, 103–110 (2015).  https://doi.org/10.1016/j.jenvman.2015.04.002 CrossRefGoogle Scholar
  24. 24.
    Jallouli, N.; Elghniji, K.; Trabelsi, H.; Ksibi, M.: Photocatalytic degradation of paracetamol on \(\text{ TiO }_{2}\)nanoparticles and \(\text{ TiO }_{2}\)/cellulosic fiber under UV and sunlight irradiation. Arab. J. Chem. 10, S3640–S3645 (2017).  https://doi.org/10.1016/j.arabjc.2014.03.014 CrossRefGoogle Scholar
  25. 25.
    Rosu, M.C.; Coros, M.; Pogacean, F.; Magerusan, L.; Socaci, C.; Turza, A.; Pruneanu, S.: Azo dyes degradation using \(\text{ TiO }_{2}\)-Pt/graphene oxide and \(\text{ TiO }_{2}\)-Pt/reduced graphene oxide photocatalysts under UV and natural sunlight irradiation. Solid State Sci. 70, 13–20 (2017).  https://doi.org/10.1016/j.solidstatesciences.2017.05.013 CrossRefGoogle Scholar
  26. 26.
    Talwar, S.; Sangal, V.K.; Verma, A.: Feasibility of using combined \(\text{ TiO }_{2}\) photocatalysis and RBC process for the treatment of real pharmaceutical wastewater. J. Photochem. Photobiol. A Chem. 353, 119 (2018).  https://doi.org/10.1016/j.jphotochem.2017.11.013 CrossRefGoogle Scholar
  27. 27.
    Aleboyeh, A.; Moussa, Y.; Aleboyeh, H.: The effect of operational parameters on UV/\(\text{ H }_{2}\text{ O }_{2}\) decolourisation of Acid Blue 74. Dye Pigment. 66, 129–134 (2005).  https://doi.org/10.1016/j.dyepig.2004.09.008 CrossRefGoogle Scholar
  28. 28.
    Verma, A.; Prakash, N.T.; Toor, A.P.: An efficient \(\text{ TiO }_{2}\) coated immobilized system for the degradation studies of herbicide isoproturon: durability studies. Chemosphere 109, 7–13 (2014).  https://doi.org/10.1016/j.chemosphere.2014.02.051 CrossRefGoogle Scholar
  29. 29.
    Garg, A.; Sangal, V.K.; Bajpai, P.K.: Decolorization and degradation of reactive black 5 dye by photocatalysis: modeling, optimization and kinetic study. Desalin. Water Treat. 3994, 1 (2015).  https://doi.org/10.1080/19443994.2015.1086697 CrossRefGoogle Scholar
  30. 30.
    Valgas, C.; De Souza, S.M.; Smânia, E.F.A.; Artur, S.J.: Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 38, 369–380 (2007).  https://doi.org/10.1590/S1517-83822007000200034 CrossRefGoogle Scholar
  31. 31.
    Elmolla, E.S.; Chaudhuri, M.; Eltoukhy, M.M.: The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process. J. Hazard. Mater. 179, 127–134 (2010).  https://doi.org/10.1016/j.jhazmat.2010.02.068 CrossRefGoogle Scholar
  32. 32.
    Zamaniyan, A.; Joda, F.; Behroozsarand, A.; Ebrahimi, H.: Application of artificial neural networks (ANN) for modeling of industrial hydrogen plant. Int. J. Hydrog. Energy 38, 6289–6297 (2013).  https://doi.org/10.1016/j.ijhydene.2013.02.136 CrossRefGoogle Scholar
  33. 33.
    Kaur, P.; Sangal, V.K.; Kushwaha, J.P.: Modeling and evaluation of electro-oxidation of dye wastewater using artificial neural networks. RSC Adv. 5, 34663–34671 (2015).  https://doi.org/10.1039/c4ra14160a CrossRefGoogle Scholar
  34. 34.
    Bhatti, M.S.; Kapoor, D.; Kalia, R.K.; Reddy, A.S.; Thukral, A.K.: RSM and ANN modeling for electrocoagulation of copper from simulated wastewater: multi objective optimization using genetic algorithm approach. Desalination 274, 74–80 (2011).  https://doi.org/10.1016/j.desal.2011.01.083 CrossRefGoogle Scholar
  35. 35.
    Agatonovic-Kustrin, S.; Beresford, R.: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 22, 717–727 (2000).  https://doi.org/10.1016/S0731-7085(99)00272-1 CrossRefGoogle Scholar
  36. 36.
    Pareek, V.; Brungs, M.; Adesina, a; Sharma, R.: Artificial neural network modeling of a multiphase photodegradation system. J. Photochem. Photobiol. A Chem. 149, 139–146 (2002).  https://doi.org/10.1016/S1010-6030(01)00640-2 CrossRefGoogle Scholar
  37. 37.
    Sangal, V.K.; Kumar, V.; Mishra, I.M.: Process parametric optimization of a divided wall distillation column. Chem. Eng. Commun. 201, 37–41 (2014).  https://doi.org/10.1080/00986445.2012.762625 CrossRefGoogle Scholar
  38. 38.
    Rastegar, M.; Shadbad, K.R.; Khataee, A.R.; Pourrajab, R.: Optimization of photocatalytic degradation of sulphonated diazo dye C.I. reactive green 19 using ceramic-coated TiO\(_{2}\) nanoparticles. Environ. Technol. 33, 995–1003 (2012).  https://doi.org/10.1080/09593330.2011.604859 CrossRefGoogle Scholar
  39. 39.
    Singh, P.; Mittal, R.; Sharma, G.C.; Singh, S.; Singh, A.: Ornidazole: comprehensive profile. Profiles Drug Subst. Excip. Relat. Methodol. 30, 123–184 (2003)CrossRefGoogle Scholar
  40. 40.
    Saggioro, E.M.; Oliveira, A.S.; Pavesi, T.; Maia, C.G.; Ferreira, L.F.V.; Moreira, J.C.: Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes. Molecules 16, 10370–10386 (2011).  https://doi.org/10.3390/molecules161210370 CrossRefGoogle Scholar
  41. 41.
    Rizzo, L.: Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Res. 45, 4311–4340 (2011).  https://doi.org/10.1016/j.watres.2011.05.035 CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Steffi Talwar
    • 1
  • Vikas Kumar Sangal
    • 1
  • Anoop Verma
    • 2
  • Parminder Kaur
    • 1
  • Alok Garg
    • 1
  1. 1.Department of Chemical EngineeringThapar Institute of Engineering and TechnologyPatialaIndia
  2. 2.School of Energy and EnvironmentThapar Institute of Engineering and TechnologyPatialaIndia

Personalised recommendations