Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 5, pp 4233–4243 | Cite as

Polymer Nanocomposite-Modified Asphalt: Characterisation and Optimisation Using Response Surface Methodology

  • Nura BalaEmail author
  • Ibrahim Kamaruddin
  • Madzlan Napiah
  • Muslich Hartadi Sutanto
Research Article - Civil Engineering

Abstract

In recent years, nanomaterials have led to promising developments in the improvement of pavement performance. In this study, characterisation of nanocomposite-modified binders using Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), and dynamic shear rheometer was investigated. The study investigates the application of response surface methodology (RSM) to develop models and determine optimum proportions for higher linear viscoelastic properties. FT-IR spectroscopy confirms chemical reaction between nanosilica- and polypropylene-modified bitumens, which resulted in a reduction in oxidative hardening of the modified binders. FE-SEM analysis for the modified binders shows a good dispersion of polypropylene and nanosilica within the modified binder matrix. RSM statistical analysis shows a high correlation coefficient \(({R}^{2})\) of 0.9959, 0.9972, and 0.9964 for the responses complex modulus, phase angle, and viscosity. This indicates that the experimental values analysed are in real agreement with the developed models. Analysis of the individual effects of the independent variables temperature and nanosilica content reveals that all the responses are influenced by the interaction of both the two independent variables, but temperature shows a strong influence in the complex modulus and complex viscosity responses than nanosilica content. Numerical optimisation results using the models developed show that an optimum mix can be achieved with 1% nanosilica at a temperature of \(30\,^{\circ }\hbox {C}\).

Keywords

Polypropylene Optimisation Polymer composites Characterisation Nanosilica 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, Y.; Luo, R.; Lytton, R.L.: Characterizing permanent deformation and fracture of asphalt mixtures by using compressive dynamic modulus tests. J. Mater. Civ. Eng. 24, 898–906 (2011)CrossRefGoogle Scholar
  2. 2.
    Lu, X.; Isacsson, U.: Effect of ageing on bitumen chemistry and rheology. Constr. Build. Mater. 16, 15–22 (2002)CrossRefGoogle Scholar
  3. 3.
    Durrieu, F.; Farcas, F.; Mouillet, V.: The influence of UV aging of a styrene/butadiene/styrene modified bitumen: comparison between laboratory and on site aging. Fuel 86, 1446–1451 (2007)CrossRefGoogle Scholar
  4. 4.
    Cerni, G.; Bocci, E.; Cardone, F.; Corradini, A.: Correlation between asphalt mixture stiffness determined through static and dynamic indirect tensile tests. Arab. J. Sci. Eng 42(3), 1295–1303 (2017)CrossRefGoogle Scholar
  5. 5.
    Sousa, J.B.; Craus, J.; Monismith, C.L.: Summary report on permanent deformation in asphalt concrete. Strategic Highway Research Program (No. SHRP-A-318) (1991)Google Scholar
  6. 6.
    Wang, D.; Wang, L.; Zhou, G.: Fatigue of asphalt binder, mastic and mixture at low temperature. Front. Struct. Civ. Eng. 6, 166–175 (2012)Google Scholar
  7. 7.
    Caro, S.; Masad, E.; Bhasin, A.; Little, D.N.: Moisture susceptibility of asphalt mixtures, part 1: mechanisms. Int. J. Pavement Eng. 9, 81–98 (2008)CrossRefGoogle Scholar
  8. 8.
    Miller, C.; Little, D.; Bhasin, A.; Gardner, N.; Herbert, B.: Surface energy characteristics and impact of natural minerals on aggregate-bitumen bond strengths and asphalt mixture durability. Transp. Res. Rec. J Transp. Res. Board 2267, 45–55 (2012)CrossRefGoogle Scholar
  9. 9.
    Yusoff, N.I.M.; Mounier, D.; Marc-Stéphane, G.; Hainin, M.R.; Airey, G.D.; Di Benedetto, H.: Modelling the rheological properties of bituminous binders using the 2s2p1d model. Constr. Build. Mater. 38, 395–406 (2013)CrossRefGoogle Scholar
  10. 10.
    Bala, N.; Kamaruddin, I.: Physical and storage stability properties of linear low density polyethylene at optimum content. In: Engineering Challenges for Sustainable Future: Proceedings of the 3rd International Conference on Civil, Offshore and Environmental Engineering (ICCOEE 2016, Malaysia, 15–17 Aug 2016), p. 395 (2016)Google Scholar
  11. 11.
    Punith, V.; Veeraragavan, A.: Behavior of reclaimed polyethylene modified asphalt cement for paving purposes. J. Mater. Civ. Eng. 23, 833–845 (2010)CrossRefGoogle Scholar
  12. 12.
    Fang, C.; Li, T.; Zhang, Z.; Wang, X.: Combined modification of asphalt by waste PE and rubber. Polym. Compos. 29, 1183–1187 (2008)CrossRefGoogle Scholar
  13. 13.
    Bala, N.; Kamaruddin, I.; Napiah, M.: The influence of polymer on rheological and thermo oxidative aging properties of modified bitumen binders. J. Teknol. 79, 69–73 (2017)Google Scholar
  14. 14.
    Wen, G.; Zhang, Y.; Zhang, Y.; Sun, K.; Fan, Y.: Rheological characterization of storage-stable SBS-modified asphalts. Polym. Test. 21, 295–302 (2002)CrossRefGoogle Scholar
  15. 15.
    Modarres, A.: Investigating the toughness and fatigue behavior of conventional and SBS modified asphalt mixes. Constr. Build. Mater. 47, 218–222 (2013)CrossRefGoogle Scholar
  16. 16.
    Lesueur, D.: The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Adv. Colloid Interface Sci. 145, 42–82 (2009)CrossRefGoogle Scholar
  17. 17.
    Guo, J.; Guo, J.; Wang, S.; Xu, Z.: Asphalt modified with nonmetals separated from pulverized waste printed circuit boards. Environ. Sci. Technol. 43, 503–508 (2008)CrossRefGoogle Scholar
  18. 18.
    Yusoff, N.I.M.; Breem, A.A.S.; Alattug, H.N.; Hamim, A.; Ahmad, J.: The effects of moisture susceptibility and ageing conditions on nano-silica/polymer-modified asphalt mixtures. Constr. Build. Mater. 72, 139–147 (2014)CrossRefGoogle Scholar
  19. 19.
    Yu, R.; Fang, C.; Liu, P.; Liu, X.; Li, Y.: Storage stability and rheological properties of asphalt modified with waste packaging polyethylene and organic montmorillonite. Appl. Clay Sci. 104, 1–7 (2015)CrossRefGoogle Scholar
  20. 20.
    Fang, C.; Yu, R.; Liu, S.; Li, Y.: Nanomaterials applied in asphalt modification: a review. J. Mater. Sci. Technol. 29, 589–594 (2013)CrossRefGoogle Scholar
  21. 21.
    Yao, H.; You, Z.; Li, L.; Lee, C.H.; Wingard, D.; Yap, Y.K.; et al.: Rheological properties and chemical bonding of asphalt modified with nanosilica. J. Mater. Civ. Eng. 25, 1619–1630 (2012)CrossRefGoogle Scholar
  22. 22.
    Singh, L.; Karade, S.; Bhattacharyya, S.; Yousuf, M.; Ahalawat, S.: Beneficial role of nanosilica in cement based materials—a review. Constr. Build. Mater. 47, 1069–1077 (2013)CrossRefGoogle Scholar
  23. 23.
    LeBaron, P.C.; Wang, Z.; Pinnavaia, T.J.: Polymer-layered silicate nanocomposites: an overview. Appl. Clay Sci. 15, 11–29 (1999)CrossRefGoogle Scholar
  24. 24.
    Ray, S.S.; Okamoto, M.: Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003)CrossRefGoogle Scholar
  25. 25.
    Yang, J.; Tighe, S.: A review of advances of nanotechnology in asphalt mixtures. Proc. Soc. Behav. Sci. 96, 1269–1276 (2013)CrossRefGoogle Scholar
  26. 26.
    Bala, N.; Kamaruddin, I.; Napiah, M.; Danlami, N.: Rheological and rutting evaluation of composite nanosilica/polyethylene modified bitumen. In: Proceedings of the 7th International Conference on Key Engineering Materials (ICKEM 2017) held between 11th to 13th March 2017, Penang Malaysia. IOP Conference Series: Materials Science and Engineering, vol. 201 (2017)Google Scholar
  27. 27.
    Moghaddam, T.B.; Soltani, M.; Karim, M.R.: Stiffness modulus of polyethylene terephthalate modified asphalt mixture: a statistical analysis of the laboratory testing results. Mater. Des. 68, 88–96 (2015)CrossRefGoogle Scholar
  28. 28.
    Yadav, O.P.; Thambidorai, G.; Nepal, B.; Monplaisir, L.: A robust framework for multi-response surface optimization methodology. Qual. Reliab. Eng. Int. 30, 301–311 (2014)CrossRefGoogle Scholar
  29. 29.
    Kuri, A.; Cornell, J.: Response Surfaces. Design and Analyses. Marcel Dekker Inc., New York (1996)Google Scholar
  30. 30.
    Myer, R.; Montgomery, D.C.: Response Surface Methodology: Process and Product Optimization Using Designed Experiment, pp. 343–350. Wiley, New York (2002)Google Scholar
  31. 31.
    Zhu, J.; Birgisson, B.; Kringos, N.: Polymer modification of bitumen: advances and challenges. Eur. Polym. J. 54, 18–38 (2014)CrossRefGoogle Scholar
  32. 32.
    Li, R.; Xiao, F.; Amirkhanian, S.; You, Z.; Huang, J.: Developments of nano materials and technologies on asphalt materials—a review. Constr. Build. Mater. 143, 633–648 (2017)CrossRefGoogle Scholar
  33. 33.
    Adhikari, B.; De, D.; Maiti, S.: Reclamation and recycling of waste rubber. Prog. Polym. Sci. 25, 909–948 (2000)CrossRefGoogle Scholar
  34. 34.
    Fini, E.H.; Hajikarimi, P.; Rahi, M.; Moghadas Nejad, F.: Physiochemical, rheological, and oxidative aging characteristics of asphalt binder in the presence of mesoporous silica nanoparticles. J. Mater. Civ. Eng. 28, 04015133 (2015)CrossRefGoogle Scholar
  35. 35.
    Yusoff, N.I.M.; Jakarni, F.M.; Nguyen, V.H.; Hainin, M.R.; Airey, G.D.: Modelling the rheological properties of bituminous binders using mathematical equations. Constr. Build. Mater. 40, 174–188 (2013)CrossRefGoogle Scholar
  36. 36.
    Airey, G.D.: Rheological properties of styrene butadiene styrene polymer modified road bitumens*. Fuel 82, 1709–1719 (2003)CrossRefGoogle Scholar
  37. 37.
    Kennedy, T.W.; Huber, G.A.; Harrigan, E.T.; Cominsky, R.J.; Hughes, C.S.; Von Quintus H., et al.: Superior Performing Asphalt Pavements (Superpave): The Product of the SHRP Asphalt Research Program. Strategic Highway Research Program, National Research Council, Report No. SHRP-A-410 (1994)Google Scholar
  38. 38.
    Montgomery, D.C.: Design and Analysis of Experiments. Wiley, New York (2008)Google Scholar
  39. 39.
    Li, Q.; Cai, L.; Fu, Y.; Wang, H.; Zou, Y.: Fracture properties and response surface methodology model of alkali-slag concrete under freeze–thaw cycles. Constr. Build. Mater. 93, 620–626 (2015)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Nura Bala
    • 1
    Email author
  • Ibrahim Kamaruddin
    • 1
  • Madzlan Napiah
    • 1
  • Muslich Hartadi Sutanto
    • 1
  1. 1.Department of Civil and Environmental EngineeringUniversiti Teknologi PETRONASBandar Seri IskandarMalaysia

Personalised recommendations