Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 2151–2163 | Cite as

Functional Quantization-Based Data Compression in Seismic Acquisition

  • Hamood ur Rehman KhanEmail author
  • Salam A. Zummo
Research Article - Electrical Engineering
  • 19 Downloads

Abstract

The trend in seismic acquisition is geared toward high geophone densities. Future node densities are expected to be on the order of 1M nodes, leading to a huge aggregate data rate in the geophone array and requiring the use of some form of signal compression. This work presents a family of signal compression algorithms based on vector quantization and its transposition to the infinite-dimensional case—functional quantization (FQ). Using FQ, we quantize the entire sample path of the seismic waveform in a target function space, instead of quantizing individual samples. The polynomial design and computational complexity afforded by FQ allow for online training of codebooks where the statistics of the seismic wavefield may be changing. An efficient algorithm for the construction of a functional quantizer is given. It is based on Monte Carlo simulation to circumvent the curse of high dimensionality and avoids explicit construction of Voronoi regions to tessellate the function space of interest. In the sequel, we augment our basic FQ architecture with three different VQ techniques in the literature. The augmentation yields hybridized FQ strategies. These hybrid quantization algorithms are: (1) FQ-classified VQ, (2) FQ-residual/multistage VQ and (3) FQ-recursive VQ. The joint quantizers are obtained by replacing regular VQ codebooks in these hybrid quantizers by their FQ equivalents. Simulation results show that the FQ combined with these different VQ techniques performs better in the rate–distortion sense than either FQ alone or the aforementioned VQ techniques in isolation.

Keywords

Functional quantization Vector quantization Infinite-dimensional quantization Residual vector quantization LBG algorithm Centroidal Voronoi Tessellation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Savazzi, S.; Spagnolini, U.: Wireless Geophone Networks for High Density Land Acquisitions: Technologies and Future Potential, p. 259262. The Leading Edge, Special Section, Seismic Acquisition (2008)Google Scholar
  2. 2.
    Savazzi, S.; et. al.: Ultra-wide band sensor networks in oil and gas explorations. IEEE Commun. Mag. (2013)Google Scholar
  3. 3.
    Savazzi, S.; Spagnolini, U.: Compression and coding for cable-free land acquisition systems. Geophysics 76(5) (2011)Google Scholar
  4. 4.
    Rubin, M.J.; Wakin, M.B.; Camp, T.: Lossy compression for wireless seismic data acquisition. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 9(1), 236–252 (2016)CrossRefGoogle Scholar
  5. 5.
    Villasenor, J.D.; Ergas, R.A.; Donoho, P.L.: Seismic data compression using high-dimensional wavelet transforms. In: Data Compression Conference, DCC ’96. Proceedings, Snowbird, UT, pp. 396–405 (1996)Google Scholar
  6. 6.
    Averbuch, A.Z.; Meyer, F.; Stromberg, J.O.; Coifman, R.; Vassiliou, A.: Low bit-rate efficient compression for seismic data. IEEE Trans. Image Process. 10(12), 1801–1814 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Wu, W.; Yang, Z.; Qin, Q.; Hu, F.: Adaptive seismic data compression using wavelet packets. In: IEEE International Symposium on Geoscience and Remote Sensing. Denver, CO, pp. 787–789 (2006)Google Scholar
  8. 8.
    Al-Moohimeed, M.A.: Towards an efficient compression algorithm for seismic data. In: Asia-Pacific Radio Science Conference, 2004. Proceedings, pp. 550–553 (2004)Google Scholar
  9. 9.
    Rsten, T.; Ramstad, T.A.; Amundsen, L.: Optimization of subband coding method for seismic data compression. Geophys. Prospect. 52(5), 359–78 (2004)CrossRefGoogle Scholar
  10. 10.
    Radosavljevi, M.; Xiong, Z.; Lu, L.; Vukobratovi, D.: High bit-depth image compression with application to seismic data. Vis. Commun. Image Process. (VCIP) 2016, 1–4 (2016)Google Scholar
  11. 11.
    Duval, L.C.; Bui-Tran, V.; Nguyen, T.Q.; Tran, T. D.: Seismic data compression using GenLOT: towards "optimality"? In: Proceedings DCC: data compression conference, Snowbird, UT, USA, p 552 (2000)Google Scholar
  12. 12.
    Riskin, E.A.: Optimal bit allocation via the generalized BFOS algorithm. IEEE Trans. Inf. Theory 37(2), 400–402 (1991)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nouy, A.: Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations. Arch. Comput. Methods Eng. 16(3), 251285 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Orlitsky, A.; Santhanam, N.P.; Zhang, J.: Universal compression of memoryless sources over unknown alphabets. IEEE Trans. Inf. Theory 50(7), 1469–1481 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Xiu, D.: Fast numerical methods for stochastic computations: a review. Commun. Comput. Phys. 5(24), 242272 (2009)MathSciNetGoogle Scholar
  16. 16.
    Schuller, G.I.: A state-of-the-art report on computational stochastic mechanics. Probab. Eng. Mech. 12(4), 197–321 (1997)CrossRefGoogle Scholar
  17. 17.
    Miranda, M.J.; Bocchini, P.: Appl. Math. Comput. 271, 935–958 (2015)MathSciNetGoogle Scholar
  18. 18.
    Ghanem, R.; Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach (revised) Dover (2003)Google Scholar
  19. 19.
    Pags, G.; Printems, J.: Optimal quantization for finance: from random vectors to stochastic processes. In: Ciarlet, P. G., (Ed.) Handbook of Numerical Analysis, vol. XV, Special Volume: Mathematical Modeling and Numerical Methods in Finance pp. 595–648. North-Holland (2008)Google Scholar
  20. 20.
    Luschgy, H.; Pages, G.: Functional quantization of Gaussian processes. J. Funct. Anal. 196(2), 486531 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Luschgy, H.; Pages, G.: Sharp asymptotics of the functional quantization problem for Gaussian processes. Ann. Probab. 32(2), 15741599 (2004)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Luschgy, H.; Pages, G.: Functional quantization of a class of Brownian diffusions: a constructive approach. Stoch. Process. Appl. 116(2), 310336 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Graf, S.; Luschgy, H.; Pages, G.: Optimal quantizers for Radon random vectors in a Banach space. J. Approx. Theory 144(1), 2753 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Cover, T.M.; Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommunications and Signal Processing, New York (2006)zbMATHGoogle Scholar
  25. 25.
    Gersho, A.; Gray, R.M.: Vector Quantization and Signal Compression. Kluwer, Boston (1992)CrossRefzbMATHGoogle Scholar
  26. 26.
    Gray, R.M.; Neuhoff, D.L.: Quantization. IEEE Trans. Inf. Theory 44(6), 23252383 (1998)CrossRefGoogle Scholar
  27. 27.
    Du, Q.; Gunzburger, M.; Ju, L.: Advances in studies and applications of centroidal Voronoi tessellations. Numer. Math. Theory Methods Appl. 3(2), 119–142 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Savazzi, S.; Spagnolini, U.; Goratti, L.; Molteni, D.; Latva-aho, M.; Nicoli, M.: Ultra-wide band sensor networks in oil and gas explorations. IEEE Commun. Mag. 51(4), 150–160 (2013)CrossRefGoogle Scholar
  29. 29.
    Savazzi, S.; Spagnolini, U.: Compression and coding for cable-free land acquisition systems. Geophysics, 76(5) (2011)Google Scholar
  30. 30.
    Berger, T.: Rate Distortion Theory: A Mathematical Basis for Data Compression. Information and System Sciences Series. Prentice-Hall, Englewood Cliffs (1971)Google Scholar
  31. 31.
    Pier Luigi, D.; Gastpar, M.: Distributed Source Coding: Theory, Algorithms, and Applications. Elsevier, New York (2009)Google Scholar
  32. 32.
    Pradhan, S.S.; Ramachandran, K.: Distributed source coding using syndromes (DISCUS): design and construction. In: Proceedings of the 1999 IEEE Data Compression Conference (Snowbird Utah) (1999)Google Scholar
  33. 33.
    Gastpar, M.; Rimoldi, B.; Vetterli, M.: To code, or not to code: Lossy source-channel communication revisited. IEEE Trans. Inf. Theory 49(5), 11471158 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Gastpar, M.; Dragotti, P.L.; Vetterli, M.: The distributed Karhunen–Love transform. IEEE Trans. Inf. Theory 52(12), 51775196 (2006)CrossRefzbMATHGoogle Scholar
  35. 35.
    Konsbruck, R.L.; Telatar, E.; Vetterli, M.: On sampling and coding for distributed acoustic sensing. IEEE Trans. Inf. Theory 58(5), 3198–3214 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Beferull-Lozano, B.; Konsbruck, R.L.: On source coding for distributed temperature sensing with shift-invariant geometries. IEEE Trans. Commun. 59(4), 10531065 (2011)CrossRefGoogle Scholar
  37. 37.
    Grenander, U.; Szego, G.: Toeplitz Forms and Their Applications. UC Berkley Press, Berkeley and Los Angeles (1958)CrossRefzbMATHGoogle Scholar
  38. 38.
    Dudgeon, D.E.; Mersereau, R.M.: Multidimensional Digital Signa lProcessing. Prentice-Hall, Upper Saddle River (1984)zbMATHGoogle Scholar
  39. 39.
    David, G.: Luenberger, Optimization by Vector Space Methods, 1st edn. Wiley, New York (1997)Google Scholar
  40. 40.
    Grigoriu, M.: Stochastic Calculus: Applicationsin Science and Engineering. Birkhuser, Boston (2002)CrossRefzbMATHGoogle Scholar
  41. 41.
    Doob, J.L.: Stochastic Processes. Wiley, New York (1953)zbMATHGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations