Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 2165–2175 | Cite as

Pareto-Based Multi-objective Optimization for Fractional Order \(\hbox {PI}^{\lambda }\) Speed Control of Induction Motor by Using Elman Neural Network

  • Metin DemirtasEmail author
  • Erdem Ilten
  • Haris Calgan
Research Article - Electrical Engineering
  • 53 Downloads

Abstract

This paper presents Pareto-based multi-objective optimization for speed control of induction motor with fractional order proportional integral (\(\hbox {FOPI}^{\lambda }\)) controller. The aim of this study is to find optimum values of tuning parameters of \(\hbox {FOPI}^{\lambda }\) by using Elman neural network (ENN) and Pareto-based multi-objective optimization. In this context, proportional gain \(K_{\mathrm{p}}\), integral gain \(K_{\mathrm{i}}\) and the order of fractional integral \(\lambda \) are selected as tuning parameters while settling time \({T}_{\mathrm{s}}\) and overshoot \({M}_{\mathrm{o}}\) are chosen as objective functions. Firstly, experiments have been carried out to obtain training and test data. Then, ENN has been trained to construct mathematical model which is necessary for multi-objective optimization. In the next step, accuracy and reliability of ENN model are tested by using test data taken from experimental set-up. Finally, Pareto-based multi-objective optimization method has been used to find the optimum values of tuning parameters that minimize both \({T}_{\mathrm{s}}\) and \({M}_{\mathrm{o}}\) values. The different three conditions of the Pareto solution set are applied to the experimental set-up to verify the effectiveness of the proposed method. Results show that ENN is well modelled for induction motor and Pareto solution is an effective method to find optimal values of controller coefficients according to desired \({T}_{\mathrm{s}}\) and \({M}_{\mathrm{o}}\) values.

Keywords

Fractional order PI Induction motor Elman neural network Multi-objective optimization Pareto front 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arulmozhiyal, R.; Baskaran, K.; Devarajan, N.; Kanagaraj, J.: Real time MATLAB interface for speed control of Induction motor drive using dsPIC 30F4011. Int. J. Comput. Appl. 1, 85–90 (2010)Google Scholar
  2. 2.
    Waskar, S.A.; Bombale, U.L.; Sonawane, T.B.: dsPIC based SPWM controlled three phase inverter fed induction motor drive. Int. J. Comput. Appl. 47, 17–20 (2012)Google Scholar
  3. 3.
    Bowling, S.: An Introduction to AC Induction Motor Control Using the dsPIC30F MCU. Application Note (AN984), Microchip Technology Inc., Chandler (2005)Google Scholar
  4. 4.
    Toufouti, R.; Meziane, S.; Benalla, H.: New direct torque neuro-fuzzy control based SVM for dual two level inverter-fed induction motor. J. Control Eng. Appl. Inform. 11, 3–13 (2009)Google Scholar
  5. 5.
    Suetake, M.; da Silva, I.N.; Goedtel, A.: Embedded DSP-based compact fuzzy system and its application for induction-motor \(V/f\) speed control. IEEE Trans. Ind. Electron. 58, 750–760 (2011)CrossRefGoogle Scholar
  6. 6.
    Ustun, S.V.; Demirtas, M.: Modeling and control of \(V/f\) controlled induction motor using genetic-ANFIS algorithm. Energy Convers. Manag. 50, 786–791 (2009)CrossRefGoogle Scholar
  7. 7.
    Ilten, E.; Demirtas, M.: Off-line tuning of fractional order \(\text{ PI }\uplambda \) controller by using response surface method for induction motor speed control. J. Control Eng. Appl. Inform. 18, 20–27 (2016)Google Scholar
  8. 8.
    Rahmani, M.; Ghanbari, A.; Ettefagh, M.M.: Robust adaptive control of a bio-inspired robot manipulator using bat algorithm. Expert Syst. Appl. 56, 164–176 (2016)CrossRefGoogle Scholar
  9. 9.
    Carlucho, I.; De Paula, M.; Villar, S.A.; Acosta, G.G.: Incremental Q-learning strategy for adaptive PID control of mobile robots. Expert Syst. Appl. 80, 183–199 (2017)CrossRefGoogle Scholar
  10. 10.
    Masumpoor, S.; Khanesar, M.A.: Adaptive sliding-mode type-2 neuro-fuzzy control of an induction motor. Expert Syst. Appl. 42, 6635–6647 (2015)CrossRefGoogle Scholar
  11. 11.
    Özdemir, N.; Agrawal, O.P.; İskender, B.B.; Karadeniz, D.: Fractional optimal control of a 2-dimensional distributed system using eigenfunctions. Nonlinear Dyn. 55, 251–260 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Arpaci, H.; Ozguven, O.F.: Design of adaptive fractional-order PID controller to enhance robustness by means of adaptive network fuzzy inference system. Int. J. Fuzzy Syst. 19, 1–14 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Biswas, A.; Das, S.; Abraham, A.; Dasgupta, S.: Design of fractional-order \(\text{ PI }\uplambda \text{ D }\upmu \) controllers with an improved differential evolution. Eng. Appl. Artif. Intell. 22, 343–350 (2009)CrossRefGoogle Scholar
  14. 14.
    Haji, V.H.; Monje, C.A.: Fractional order fuzzy-PID control of a combined cycle power plant using particle swarm optimization algorithm with an improved dynamic parameters selection. Appl. Soft Comput. 58, 256–264 (2017)CrossRefGoogle Scholar
  15. 15.
    Ge, H.-W.; Qian, F.; Liang, Y.-C.; Du, W.; Wang, L.: Identification and control of nonlinear systems by a dissimilation particle swarm optimization-based Elman neural network. Nonlinear Anal. Real World Appl. 9, 1345–1360 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hsu, C.-F.: Adaptive backstepping Elman-based neural control for unknown nonlinear systems. Neurocomputing 136, 170–179 (2014)CrossRefGoogle Scholar
  17. 17.
    Sharkawy, A.B.: Genetic fuzzy self-tuning PID controllers for antilock braking systems. Eng. Appl. Artif. Intell. 23, 1041–1052 (2010)CrossRefGoogle Scholar
  18. 18.
    Shahiri, M.; Ranjbar, A.; Karami, M.R.; Ghaderi, R.: New tuning design schemes of fractional complex-order PI controller. Nonlinear Dyn. 84, 1813–1835 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tang, Y.; Cui, M.; Hua, C.; Li, L.; Yang, Y.: Optimum design of fractional order \(\text{ PI }\uplambda \text{ D }\upmu \) controller for AVR system using chaotic ant swarm. Expert Syst. Appl. 39, 6887–6896 (2012)CrossRefGoogle Scholar
  20. 20.
    Khalfa, B.; Charef, A.; Vinagre, B.M.: A proposal for optimal tuning of fractional order proportional integral-proportional derivative \(\text{ PI }\upalpha \)-\(\text{ PD }\)ß controllers. In: IEEE Conference on Emerging Technologies and Factory Automation, 2009. ETFA 2009, IEEE. pp. 1–8 (2009)Google Scholar
  21. 21.
    Bettou, K.; Charef, A.: Tuning of fractional order PI \(\upalpha \)-PD controller using particle swarm optimization algorithm. In: 2013 3rd International Conference on Systems and Control (ICSC), IEEE. pp. 271–275 (2013)Google Scholar
  22. 22.
    Gao, X.Z.; Gao, X.M.; Ovaska, S.J.: A modified Elman neural network model with application to dynamical systems identification. In: IEEE International Conference on Systems, Man, and Cybernetics, 1996, IEEE. pp. 1376–1381 (1996)Google Scholar
  23. 23.
    Wlas, M.; Krzeminski, Z.; Guzinski, J.; Abu-Rub, H.; Toliyat, H.A.: Artificial-neural-network-based sensorless nonlinear control of induction motors. IEEE Trans. Energy Convers. 20, 520–528 (2005)CrossRefGoogle Scholar
  24. 24.
    Lin, W.-M.; Hong, C.-M.: A new Elman neural network-based control algorithm for adjustable-pitch variable-speed wind-energy conversion systems. IEEE Trans. Power Electron. 26, 473–481 (2011)CrossRefGoogle Scholar
  25. 25.
    Jon, R.; Wang, Z.; Luo, C.; Jong, M.: Adaptive robust speed control based on recurrent elman neural network for sensorless PMSM servo drives. Neurocomputing 227, 131–141 (2017)CrossRefGoogle Scholar
  26. 26.
    El-Gammal, A.A.A.; El-Samahy, A.A.: Adaptive tuning of a PID speed controller for DC motor drives using multi-objective particle swarm optimization. In: 11th International Conference on Computer Modelling and Simulation, 2009. UKSIM’09, IEEE. pp. 398–404 (2009)Google Scholar
  27. 27.
    Guo, X.; Ren, H.-P.; Liu, D.: An optimized PI controller design for three phase PFC converters based on multi-objective chaotic particle swarm optimization. J. Power Electron. 16, 610–620 (2016)CrossRefGoogle Scholar
  28. 28.
    Wang, L.F.: Controller design for DC motor drives using multi-objective optimization evolutionary algorithms. In: Proceedings of the 2004 International Symposium on Micro-Nanomechatronics and Human Science, 2004 and The Fourth Symposium Micro-Nanomechatronics for Information-Based Society, 2004, IEEE, pp. 347–351 (2004)Google Scholar
  29. 29.
    Petras, I.: Fractional-order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  30. 30.
    Abido, M.A.; Al-Ali, N.A.: Multi-objective optimal power flow using differential evolution. Arab. J. Sci. Eng. 37, 991–1005 (2012)CrossRefzbMATHGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringBalikesir UniversityBalikesirTurkey

Personalised recommendations