Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 2131–2149 | Cite as

A Modified Space Vector PWM Approach for Nine-Level Cascaded H-Bridge Inverter

  • Hemanth Kumar BusireddyEmail author
  • Makarand Mohankumar Lokhande
  • Raghavendra Reddy Karasani
  • Vijay Bhanuji Borghate
Research Article - Electrical Engineering

Abstract

This paper presents a modified space vector pulse width modulation (MSVPWM) technique for nine-level cascaded H-bridge (CHB) inverter. Based on a modular structure and absence of capacitor balancing problems, CHB inverter topology is preferred. Nowadays, space vector PWM (SVPWM) control scheme has achieved higher attention among different PWM techniques. In general, SVPWM method is realized based on disintegrating higher-level hexagons into a number of two-level hexagons. Compared to conventional SVPWM technique, the proposed MSVPWM technique reduces the computational burden and memory requirement involved in the realization of nine-level SVPWM. This is achieved by reducing the number of two-level hexagons without losing the inverter output voltage profile. Also a further modified space vector pulse width modulation technique is presented, which greatly reduces the computation efforts. The proposed SVPWM techniques are applied to a nine-level CHB inverter by using MATLAB/SIMULINK software tool and are compared with carrier-based sinusoidal pulse width modulation (SPWM) technique to validate the proposed techniques. The proposed SVPWM schemes produce lower harmonic distortion and higher DC bus utilization compared to SPWM technique. To verify the practicality of the proposed SVPWM techniques, experimental results are presented on nine-level CHB inverter.

Keywords

Cascaded H-bridge (CHB) Pulse width modulation (PWM) Two-level hexagon Harmonic distortion Nine-level inverter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, R.H.; Bannister, L.H.: Electric power converter. U.S. Patent 3867643 (1975)Google Scholar
  2. 2.
    Baker, R.H.: Switching circuit. U.S. Patent 4210826 (1980)Google Scholar
  3. 3.
    Baker, R.H.: Bridge converter circuit. U.S. Patent 4270163 (1981)Google Scholar
  4. 4.
    Nabae, A.; Takahashi, I.; Akagi, H.: A new neutral-point clamped PWM inverter. IEEE Trans. Ind. Appl. 17(5), 518–523 (1981)CrossRefGoogle Scholar
  5. 5.
    Meynard, T.A.; Foch, H.: Multilevel conversion: high voltage choppers and voltage source inverters. In: IEEEPESC Conference Record, pp. 397–403 (1992)Google Scholar
  6. 6.
    Rodriguez, J.; Bernet, S.; Wu, B.; Pontt, J.O.; Kouro, S.: Multilevel voltage–source–converter topologies for industrial medium-voltage drives. IEEE Trans. Ind. Electron. 54(6), 2930–2945 (2007)CrossRefGoogle Scholar
  7. 7.
    Rodriguez, J.; Franquelo, L.G.; Kouro, S.; Leon, J.I.; Portillo, R.C.; Prats, M.A.M.; Perez, M.A.: Multilevel converters: an enabling technology for high-power applications. Proc. IEEE 97(11), 1786–1817 (2009)CrossRefGoogle Scholar
  8. 8.
    Karasani, R.R.; Borghate, V.B.; Meshram, P.M.; Suryawanshi, H.M.; Sabyasachi, S.: A three phase hybrid cascaded modular multilevel inverter for renewable energy environment. IEEE Trans. Power Electron. 32(2), 1070–1086 (2016)CrossRefGoogle Scholar
  9. 9.
    Karasani, R.R.; Borghate, V.B.; Meshram, P.M.; Suryawanshi, H.M.: A modified switched-diode topology for cascaded multilevel inverters. J. Power Electron. 16(5), 1706–1715 (2016)CrossRefGoogle Scholar
  10. 10.
    Holmes, D.; Grahame, A.; Thomas, A.L.: Pulse Width Modulation for Power Converters: Principles and Practice, vol. 18. Wiley, New York (2003)CrossRefGoogle Scholar
  11. 11.
    Wu, B.: High Power Converters and AC Drives. IEEE Press, New York (2006)CrossRefGoogle Scholar
  12. 12.
    Renge, M.M.; Suryawanshi, H.M.: Five-level diode clamped inverter to eliminate common mode voltage and reduce dv/dt in medium voltage rating induction motor drives. IEEE Trans. Ind. Electron. 23(4), 1598–1607 (2008)Google Scholar
  13. 13.
    Kim, J.S.: A novel voltage modulation technique of the space vector PWM. IEE J Trans. Electr. Electron. Eng. Jpn. 116(8), 820–825 (1996)Google Scholar
  14. 14.
    Busquets-Monge, S.; Bordonau, J.; Boroyevich, D.; Somavilla, S.: The nearest three virtual space vector PWM modulation for the comprehensive neutral-point balancing in the three-level NPC inverter. IEEE Power Electron. Lett. 2(1), 11–15 (2004)CrossRefGoogle Scholar
  15. 15.
    Broeck, V.; Skudelny, H.C.; Stanke, G.V.: Analysis and realisation of a pulse width modulator based on voltage space vectors. IEEE Trans. Ind. Appl. 24(1), 142–150 (1988)CrossRefGoogle Scholar
  16. 16.
    Seo, J.H.; Choi, C.H.; Hyun, D.S.: A new simplified space-vector PWM method for three-level inverters. IEEE Trans. Power Electron. 16(4), 545–550 (2001)Google Scholar
  17. 17.
    Celanovic, N.; Boroyevich, D.: A fast space-vector modulation algorithm for multilevel three-phase converters. IEEE Trans. Ind. Appl. 37(2), 637–641 (2001)CrossRefGoogle Scholar
  18. 18.
    Gopinath, A.; Aneesh Mohamed, A.S.; Baiju, M.R.: Fractal based space vector PWM for multilevel inverters–a novel approach. IEEE Trans. Ind. Appl. 56(4), 1230–1237 (2009)Google Scholar
  19. 19.
    Matsa, A.; Ahmed, I.; Chaudhari, M.A.: Optimized space vector pulse-width modulation technique for a five-level cascaded H-bridge inverter. J. Power Electron. 14(5), 937–945 (2014)CrossRefGoogle Scholar
  20. 20.
    Ahmed, I.; Borghate, V.B.: Simplified space vector modulation technique for seven-level cascaded H-bridge inverter. IET Power Electron. 7(3), 604–613 (2014)CrossRefGoogle Scholar
  21. 21.
    SEMIKRON IGBT Modules SEMITRANS-2 datasheet, SEMIKRON Co. Ltd.Google Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentVisvesvaraya National Institute of TechnologyNagpurIndia
  2. 2.Electrical Engineering DepartmentSreenidhi Institute of Science and TechnologyHyderabadIndia

Personalised recommendations