Arabian Journal for Science and Engineering

, Volume 44, Issue 2, pp 893–909 | Cite as

Desirability-Based Multi-objective Optimization and Analysis of WEDM Characteristics of Aluminium (6082)/Tungsten Carbide Composites

  • K. Ravi KumarEmail author
  • Nishasoms
Research Article - Mechanical Engineering


Wire electrical discharge machining is a broadly recognized unconventional machining process capable of accurately manufacturing rigid components with compound contours. The present study is to optimize the machining parameters of Al (6082)/tungsten carbide composite. Peak current, pulse-on time, pulse-off time, wire feed rate and tungsten carbide percentage were used as variables to study the material removal rate and surface roughness. Analysis of variance technique is used to study the effect on material removal rate and surface roughness. Material removal rate is primarily influenced by % tungsten carbide followed by peak current, pulse-off time, feed rate and pulse-on time, respectively. Surface roughness is highly influenced by peak current followed by % tungsten carbide, pulse-off time, pulse-on time and feed rate respectively. Scanning electron microscopic structures of the machined surfaces were characterized by the presence of hillocks, fine and deep craters, microcracks, protrusion, recast layers and debris. Desirability-based multi-objective optimization was employed to optimize the process parameters. The developed mathematical model has a good level of adequacy and can be used to predict the responses with minimum error. The experimental results along with the mathematical model and optimization will serve as a technical database for aerospace, automotive, military and commercial applications.


WEDM Composites Optimization Desirability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miracle, D.B.: Metal matrix composites-from science to technological significance. Compos. Sci. Technol. 65, 2526–2540 (2005)CrossRefGoogle Scholar
  2. 2.
    Rosso, M.: Ceramic and metal matrix composites: routes and properties. J. Mater. Process. Technol. 175, 364–375 (2006)CrossRefGoogle Scholar
  3. 3.
    Ravi Kumar, K.; Mohanasundaram, K.M.; Arumaikkannu, G.; Subramanian, R.: Analysis of parameters influencing wear and frictional behavior of aluminum-fly ash composites. Tribol. Trans. 55(2012), 723–729 (2012)CrossRefGoogle Scholar
  4. 4.
    Yan, B.H.; Wang, C.C.: Machinability of SiC particle reinforced aluminum alloy composite material. J. Jpn. Inst. Light Met. 43(4), 187–192 (1993)CrossRefGoogle Scholar
  5. 5.
    Monaghan, J.M.; Reilly, P.O.: The drilling of an Al/SiC metal matrix composite. J. Mater. Process. Technol. 33(4), 469–480 (1992)CrossRefGoogle Scholar
  6. 6.
    Ho, K.H.; Newman, S.T.; Rahimifard, S.; Allen, R.D.: State of art in wire electrical discharge machining (WEDM). Int. J. Mach. Tools Manuf. 44, 1247–1259 (2004)CrossRefGoogle Scholar
  7. 7.
    Shandilya, P.; Jain, P.K.; Jain, N.K.: Parametric optimization during wire electrical discharge machining using response surface methodology. Procedia Eng. 38, 2371–2377 (2012)CrossRefGoogle Scholar
  8. 8.
    Sah, P.; Tarafd, D.; Pal, S.K.: Modelling of wire electro-discharge machining of TiC/Fe in situ metal matrix composite using normalized RGFN with enhanced K-means clustering technique. Int. J. Adv. Manuf. Technol. 43(1), 107–116 (2009)CrossRefGoogle Scholar
  9. 9.
    Singh, H.; Garg, R.: Effects of process parameters on material removal rate in WEDM. J. Achieve. Mater. Manuf. Eng. 32(1), 70–74 (2009)Google Scholar
  10. 10.
    Pandey, A.B.; Brahmankar, P.K.: A method to predict possibility of arcing in EDM of TiB2p reinforced ferrous matrix composite. Int. J. Adv. Manuf. Technol. 86(9–12), 2837–2849 (2016)CrossRefGoogle Scholar
  11. 11.
    Pramanik, A.,; Islam, M.N.; Boswell, B.; Basak, A.K.; Dong, Y.; Littlefair, G.: Accuracy and finish during wire electric discharge machining of metal matrix composites for different reinforcement size and machining conditions. Proc. IMechE B J. Eng. Manuf. (2016).
  12. 12.
    Patil, N.G.; Brahmankar, P.K.: Determination of material removal rate in wire electro-discharge machining of metal matrix composites using dimensional analysis. Int. J. Adv. Manuf. Technol. 51, 599–610 (2010)CrossRefGoogle Scholar
  13. 13.
    Shandilya, P.; Jain, P.K.; Jain, N.K.: Modelling and process optimisation for wire electric discharge machining of metal matrix composites. Int. J. Mach. Mach. Mater. 18(4), 377–391 (2016)Google Scholar
  14. 14.
    Dey, A.; Pandey, K.M.: Wire electrical discharge machining characteristics of AA6061/ cenosphere as-cast aluminium matrix composites. Mater. Manuf. Process. (2017).
  15. 15.
    Rozenek, M.; Kozak, J.; Dabrowski, L.; Lubkowski, K.: Electrical discharge machining characteristics of metal matrix composites. J. Mater. Process. Technol. 109, 367–370 (2001)CrossRefGoogle Scholar
  16. 16.
    UdayaPrakash, J.; Moorthy, T.V.; Peter, M.: Experimental investigations on machinability of aluminium alloy (A413)/fly ash/B\(_{4}\)C hybrid composites using wire EDM. Procedia Eng. 64, 1344–1353 (2013)CrossRefGoogle Scholar
  17. 17.
    Garg, S.K.R.; Manna, A.; Jain, A.: Multi-objective optimization of machining characteristics during wire electrical discharge machining of Al/ZrO\(_{2}\) particulate reinforced metal matrix composite. J. Eng. Res. 1(3), 145–160 (2013)Google Scholar
  18. 18.
    Yang, W.-S.; Chen, G.-Q.; Wu, P.; Hussain, M.; Song, J.-B.; Dong, R.-H.; Wu, G.-H.: Electrical discharge machining of Al2024-65 vol% SiC composites. Acta Metall. Sin. 30(5), 447–455 (2017)CrossRefGoogle Scholar
  19. 19.
    Rajmohan, K.; Senthil Kumar, K.: Experimental investigation and prediction of optimum process parameters of micro-wire-cut EDM of 2205 DSS. Int. J. Adv. Manuf. Technol. 93(1–4), 187–201 (2017)CrossRefGoogle Scholar
  20. 20.
    Yan, B.H.; Tsai, H.C.; Huang, F.Y.; Lee, L.C.: Examination of wire electrical discharge machining of Al\(_{2}\)O\(_{3}\)p/6061Al composites. Int. J. Mach. Tools Manuf. 45(3), 251–259 (2005)CrossRefGoogle Scholar
  21. 21.
    Goswami, A.; Kumar, J.: Investigation of surface integrity, material removal rate and wire wear ratio for WEDM of Nimonic 80A alloy using GRA and Taguchi method. Eng. Sci. Technol. 17(4), 173–184 (2014)Google Scholar
  22. 22.
    Aliasa, A.; Abdullaha, B.; Abbasa, N.M.: WEDM: influence of machine feed rate in machining titanium ti-6al-4v using brass wire and constant current (4A). Procedia Eng. 41, 1812–1817 (2012)CrossRefGoogle Scholar
  23. 23.
    Sharma, A.; Gargand, M.P.; Goyal, K.K.: Prediction of optimal conditions for WEDM of Al 6063/ZrSiO\(_4\) (p) MMC. Procedia Mater. Sci. 6, 1024–1033 (2014)CrossRefGoogle Scholar
  24. 24.
    Bobbili, R.; Madhu, V.; Gogia, A.K.: Modelling and analysis of material removal rate and surface roughness in wire-cut EDM of armour materials. Eng. Sci. Technol. Int. J. 18, 664–668 (2015)CrossRefGoogle Scholar
  25. 25.
    Bobbili, R.; Madhu, V.; Gogia, A.K.: An experimental investigation of wire electrical discharge machining of hot-pressed boron carbide. Def. Technol. 11(4), 344–349 (2015)CrossRefGoogle Scholar
  26. 26.
    Pramanik, A.: Developments in the non-traditional machining of particle reinforced metal matrix composites. Int. J. Mach. Tools Manuf. 86, 44–61 (2014)CrossRefGoogle Scholar
  27. 27.
    Sivaprakasam, P.; Hariharan, P.; Gowri, S.: Modeling and analysis of micro-WEDM process of titanium alloy (Ti/6Al/4V) using response surface approach. Eng. Sci. Technol. 17, 227–235 (2014)Google Scholar
  28. 28.
    Khullar, V.R.; Sharma, N.; Kishore, S.; Sharma, R.: RSM- and NSGA-II-based multiple performance characteristics optimization of EDM parameters for AISI 5160. Arab. J. Sci. Eng. 42(5), 1917–1928 (2017)CrossRefGoogle Scholar
  29. 29.
    Pragadish, N.; Pradeep Kumar, K.: Optimization of dry EDM process parameters using grey relational analysis. Arab. J. Sci. Eng. 41(11), 4383–4390 (2016)CrossRefGoogle Scholar
  30. 30.
    Arooj, S.; Shah, M.; Sadiq, S.; Jaffery, S.H.I.; Khushnood, S.: Effect of current in the EDM machining of aluminum 6061 T6 and its effect on the surface morphology. Arab. J. Sci. Eng. 39(5), 4187–4199 (2014)CrossRefGoogle Scholar
  31. 31.
    Pragya, S.; Jain, P.K.; Jain, N.K.: Prediction of surface roughness during wire electrical discharge machining of SiC p/6061 Al metal matrix composite. Int. J. Ind. Syst. Eng. 12(3), 301–315 (2012)Google Scholar
  32. 32.
    Shandilya, P.; Jain, P.K.; Jain, N.K.: RSM and ANN modeling approaches for predicting average cutting speed during WEDM of SiCp/6061 Al MMC. Procedia Eng 64, 767–774 (2013)CrossRefGoogle Scholar
  33. 33.
    Tosun, N.; Cogun, C.; Tosun, G.: A study on kerf and material removal rate in wire electrical discharge machining based on taguchi method. J. Mater. Process. Technol. 152(3), 316–322 (2004)CrossRefGoogle Scholar
  34. 34.
    Chalisgaonkar, R.; Kumar, J.: Multi-response optimization and modeling of trim cut WEDM operation of commercially pure titanium (CP Ti) considering multiple user’s preferences. Eng. Sci. Technol. Int. J. 18, 125–134 (2015)CrossRefGoogle Scholar
  35. 35.
    Ghosal, A.; Manna, A.: Response surface method based optimization of ytterbium fiber laser parameter during machining of Al/Al\(_{2}\)O\(_{3}\)-MMC. Opt. Laser Technol. 46, 67–76 (2013)CrossRefGoogle Scholar
  36. 36.
    Sharma, N.; Khanna, R.; Gupta, R.: Multi quality characteristics of WEDM process parameters with RSM. Eng. Sci. Technol. 64, 710–719 (2013)Google Scholar
  37. 37.
    Sidhu, S.S.; Yazdani, M.: Comparative analysis of MCDM techniques for EDM of SiC/A359 composite. Arab. J. Sci. Eng 43(3), 1093–1102 (2018)CrossRefGoogle Scholar
  38. 38.
    Rao, T.B.; Gopala Krishna, A.: Selection of optimal process parameters in WEDM while machining Al7075/SiCp metal matrix composites. Int. J. Adv. Manuf. Tech. 73(1–4), 299–314 (2014)CrossRefGoogle Scholar
  39. 39.
    Derringer, G.; Suich, R.: Simultaneous optimization of several response variables. J Qual. Technol. 12(4), 214–219 (1980)CrossRefGoogle Scholar
  40. 40.
    Montgomery, D.C.: Design and Analysis of Experiments, 5th edn. Wiley, New Delhi (2004)Google Scholar
  41. 41.
    Ravi Kumar, K.; Sreebalaji, V.S.: Desirability based multi objective optimization of abrasive wear and frictional behaviour of aluminium (Al/3.25Cu/8.5Si)/ fly ash composites. Tribol. Mater. Surf. Interfaces 9, 128–136 (2015)CrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringDr. N.G.P. Institute of TechnologyCoimbatoreIndia
  2. 2.Department of Computer Science and EngineeringSri Ramakrishna Institute of TechnologyCoimbatoreIndia

Personalised recommendations