Advertisement

Arabian Journal for Science and Engineering

, Volume 44, Issue 3, pp 2597–2611 | Cite as

A Robust Fractional Order Parallel Control Structure for Flow Control using a Pneumatic Control Valve with Nonlinear and Uncertain Dynamics

  • Vishal GoyalEmail author
  • Puneet Mishra
  • Vinay Kumar Deolia
Research Article - Systems Engineering
  • 34 Downloads

Abstract

Control of flow rate in industrial plants is an essential and crucial task, which is usually achieved by pneumatic control valves in industries. Use of these valves often incorporates nonlinear and uncertain dynamics in the control loop on account of its input-output characteristics, which may result in degradation of control loop performance. To address this concern, a robust and improved fractional order parallel control structure (FOPCS) for flow control is proposed in this paper. The proposed FOPCS is an extension of parallel control structure (PCS) with the help of fractional order calculus, to enhance the robustness in the control loop without compromising with control performance. Also, a global optimization technique, backtracking search algorithm was further employed to critically tune the parameters of control structures. This was done in order to obtain an optimized and enhanced performance from the control loop. Extensive runtime studies on a laboratory scale plant, using advanced data acquisition facilities, were carried out to showcase the effectiveness of developed FOPCS. Proposed FOPCS is thoroughly assessed in terms of servo, regulatory and robustness performance. A quantitative comparison of FOPCS with PCS is also made on the basis of integral of absolute error, integral of absolute rate of controller output and their algebraic summation. All the conducted experimental studies suggested that proposed FOPCS was able to address the issues pertaining to uncertain and nonlinear behaviour of pneumatic control valve in the flow control loop.

Keywords

Flow rate control Parallel control structure Fractional order control PID controller Pneumatic control valve 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ali, A.; Majhi, S.: PID controller tuning for integrating processes. ISA Trans. 49(1), 70–78 (2010)CrossRefGoogle Scholar
  2. 2.
    Ali, A.; Majhi, S.: Integral criteria for optimal tuning of PI/PID controllers for integrating processes. Asian J. Control 13, 328–337 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Visioli, A.: Optimal tuning of PID controllers for integral and unstable processes. IEE Proc. Control Theory Appl. 148, 180–184 (2001)CrossRefGoogle Scholar
  4. 4.
    Rao, A.S.; Rao, V.S.R.; Chidambaram, M.: Direct synthesis-based controller design for integrating processes with time delay. J. Frankl. Inst. 346, 38–56 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, D.; Seborg, D.E.: PI/PID controller design based on direct synthesis and disturbance rejection. Ind. Eng. Chem. Res. 41, 4807–4822 (2002)CrossRefGoogle Scholar
  6. 6.
    Han, J.: From PID to active disturbance rejection control. IEEE Trans. Industr. Electron. 56(3), 900–906 (2009)CrossRefGoogle Scholar
  7. 7.
    Karunagaran, G.; Wenjian, C.: The parallel control structure for transparent online tuning. J. Process Control 21(7), 1072–1079 (2011)CrossRefGoogle Scholar
  8. 8.
    Åström, K.J.; Hägglund, T.: The future of PID control. Control Eng. Pract. 9(11), 1163–1175 (2001)CrossRefGoogle Scholar
  9. 9.
    Li, Z.; Liu, L.; Dehghan, S.; Chen, Y.; Xue, D.: A review and evaluation of numerical tools for fractional calculus and fractional order controls. Int. J. Control 90(6), 1165–1181 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Padula, F.; Visioli, A.: Optimal tuning rules for proportional-integral-derivative and fractional-order proportional-integral-derivative controllers for integral and unstable processes. IET Control Theory Appl. 6, 776–786 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Podlubny, I.: Fractional-order systems and \(\text{ PI }^{\lambda }\text{ D }^{\mu }\) - controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Yeroglu, C.; Tan, N.: Note on fractional-order proportional-integral-differential controller design. IET Control Theory Appl. 5(17), 1978–1989 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Chen, Y.; Petras, I.; Xue, D.: Fractional order control- A tutorial. In: American Control Conference, ACC’09, pp. 1397-1411 (2009)Google Scholar
  14. 14.
    Das, S.; Pan, I.; Das, S.: Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time. ISA Trans. 52(4), 550–566 (2013)CrossRefGoogle Scholar
  15. 15.
    Mishra, P.; Kumar, V.; Rana, K.P.S.: A fractional order fuzzy PID controller for binary distillation column control. Expert Syst. Appl. 42(22), 8533–8549 (2015)CrossRefGoogle Scholar
  16. 16.
    Dumlu, A.; Erenturk, K.: Trajectory tracking control for a 3-DOF parallel manipulator using fractional-order \(\text{ PI }^{\lambda }\text{ D }^{\mu }\) Control. IEEE Trans. Industr. Electron. 61(7), 3417–3426 (2014)CrossRefGoogle Scholar
  17. 17.
    Sondhi, S.; Hote, Y.V.: Fractional order PID controller for load frequency control. Energy Convers. Manag. 85, 343–353 (2014)CrossRefGoogle Scholar
  18. 18.
    Kumar, V.; Rana, K.P.S.: Comparative study on fractional order PID and PID controllers on noise suppression for manipulator trajectory control. In: Azar, A., Vaidyanathan, S., Ouannas, A. (eds.) Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence, vol. 688, pp. 3–28. Springer, Cham (2017)Google Scholar
  19. 19.
    Zamani, M.; Karimi-Ghartemani, M.; Sadati, N.; Parniani, M.: Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Eng. Pract. 17(12), 1380–1387 (2009)CrossRefGoogle Scholar
  20. 20.
    Beschi, M.; Padula, F.; Visioli, A.: Fractional robust PID control of a solar furnace. Control Eng. Pract. 56, 190–199 (2016)CrossRefGoogle Scholar
  21. 21.
    Roy, P.; Roy, B.K.: Fractional order PI control applied to level control in coupled two tank MIMO system with experimental validation. Control Eng. Pract. 48, 119–135 (2016)CrossRefGoogle Scholar
  22. 22.
    Pan, I.; Das, S.; Gupta, A.: Handling packet dropouts and random delays for unstable delayed processes in NCS by optimal tuning of controllers with evolutionary algorithms. ISA Trans. 50(4), 557–572 (2011)CrossRefGoogle Scholar
  23. 23.
    Shah, P.; Agashe, S.D.: Design and optimization of fractional PID controller for higher order control system. In: International Conference of IEEE ICART, pp. 588–592 (2013)Google Scholar
  24. 24.
    Feliu-Batlle, V.; Rivas-Perez, R.; Castillo-Garcia, F.J.: Fractional order controller robust to time delay variations for water distribution in an irrigation main canal pool. Comput. Electron. Agric. 69(2), 185–197 (2009)CrossRefGoogle Scholar
  25. 25.
    Cheng, Y.C.; Hwang, C.: Stabilization of unstable first order time delay systems using fractional order PD controllers. J. Chin. Inst. Eng. 29(2), 241–249 (2006)CrossRefGoogle Scholar
  26. 26.
    Stephanopolous, G.: Chemical Process Control, 1st edn. Prentice Hall of India, Delhi (2008)Google Scholar
  27. 27.
    Civicioglu, P.: Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 219(15), 8121–8144 (2013)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Sheoran, Y.; Kumar, V.; Rana, K.P.S.; Mishra, P.; Kumar, J.; Nair, S.S.: Development of backtracking search optimization algorithm toolkit in LabVIEW\(^{{\rm TM}}\). Proc. Comput. Sci. 57, 241–248 (2015)CrossRefGoogle Scholar
  29. 29.
    Al-Saggaf, U.M.; Mehedi, I.M.; Mansouri, R.; Bettyeb, M.: Rotary flexible joint control by fractional order controllers. Int. J. Control and Autom. Syst. 15, 2561–2569 (2017).  https://doi.org/10.1007/s12555-016-0008-8 CrossRefGoogle Scholar
  30. 30.
    Liu, H.; Li, S.; Li, G.; Wang, H.: Adaptive controller design for a class of uncertain fractional-order nonlinear systems: an adaptive fuzzy approach. Int. J. Fuzzy Syst. 20(2), 366–379 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© King Fahd University of Petroleum & Minerals 2018

Authors and Affiliations

  • Vishal Goyal
    • 1
    Email author
  • Puneet Mishra
    • 2
  • Vinay Kumar Deolia
    • 1
  1. 1.Department of Electronics and Communication EngineeringGLA UniversityMathuraIndia
  2. 2.Department of Electrical and Electronics EngineeringBirla Institute of Technology and SciencePilaniIndia

Personalised recommendations